
 
Center for Climate, Regional, Environmental and Trade Economics 

www.create.illinois.edu 

Climate, Regional, Environmental and Trade Economics 
65-67 Mumford Hall 
1301 West Gregory Drive 
Urbana, IL, 61801 

 
The role of interregional and inter-sectoral knowledge spillovers on regional knowledge creation 

across US metropolitan counties 

 

Orsa Kekezia, Sandy Dall’erbab, Dongwoo Kangc 

 
a Swedish Institute for Social Research (SOFI), Stockholm University, 106 91 Stockholm, Sweden and 

Centre for Entrepreneurship and Spatial Economics (CEnSE), Jönköping International Business School, 

551 11 Jönköping, Sweden, orsa.kekezi@sofi.su.se 
b Department of Agricultural and Consumer Economics and Center for Climate, Regional, Envionmental 

and Trade Economics, University of Illinois at Urbana-Champaign, IL 61801, USA, 

dallerba@illinois.edu 
c Korea Labor Institute, Sejong National Research Complex, 370, Sicheong-daero, Sejong-si, 30147, 

Korea, dwkang1982@kli.re.kr 

 

 

 

 

CREATE Discussion Paper 2-21 

July, 2021 

 

 

 

 

Abstract: Knowledge accumulation and its spillovers are important determinants of the regional 

economic growth process in the U.S. As such, this paper relies on a regional knowledge production 

function to examine the heterogeneous determinants of knowledge creation across 5 U.S. manufacturing 

sectors and 853 metropolitan counties. Using a Tobit model with State fixed effects, our results indicate 

that local intra-sectoral and inter-sectoral R&D investments by the private sector as well as university 

R&D play a key role in knowledge creation across all sectors under study. We also find that the role of 

short-distance vs. long-distance interregional spillovers on knowledge creation varies greatly across 

sectors. These key features improve the design of future local and national innovation policies. 
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1. Introduction 

As knowledge accumulation and its spillovers are recognized as important determinants of 

economic growth (Romer 1986, Grossman and Helpman 1994, Jaffe 1989), the knowledge 

production function literature has paid an increasing amount of attention to the role and the 

geography of knowledge spillovers (Audretsch and Feldman 2004, Anselin et al. 1997, Acs et al. 

2002, Bode 2004, Autant-Bernard 2012). While geographical proximity facilitates the flow of 

knowledge (Audretsch and Feldman 2004, Jaffe et al. 1993), other mechanisms such as non-market 

interactions (Glaeser and Scheinkman 2000), technological proximity (Maggioni et al. 2011), labor 

mobility (Almeida and Kogut 1999), social networks (Breschi and Lissoni 2009, Crescenzi et al. 

2016), and patent citations (Peri 2005, Kang and Dall’erba 2016a, b) promote the diffusion of 

knowledge across space also. As such, a large amount of the more recent research in this area has 

challenged the traditional view that local knowledge flows are the main determinants of local 

innovation (Peri 2005, Ponds et al. 2010).   

At the same time, a growing number of studies has followed Glaeser et al. (1992) in debating 

the relative importance of intra-sectoral and inter-sectoral knowledge spillovers on the creation of 

innovation, productivity, employment growth and, ultimately, urban agglomeration. Despite the 

extensive literature in this area, several contributions show that the conclusions on what type 

matters more are rather heterogeneous and depend on the sector studied as well as level of spatial 

aggregation (Groot et al. 2016). This debate is relevant to the regional knowledge production 

function literature because, until recently, most empirical studies used data aggregated across 

sectors (Anselin et al. 1997, Fischer and Varga 2003, Bode 2004, Parent and LeSage 2008). When 

(partially) controlled for, sectoral heterogeneity is modeled through sectoral dummies (Ponds et 

al. 2010) or through a variable reporting the share of value added produced by the manufacturing 
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sector in the region (Bottazzi and Peri 2003). Clear evidence of the sectoral heterogeneity present 

in the knowledge spillovers is, to our knowledge, very limited. For instance, Jaffe (1989) and 

Anselin et al. (2000) differentiate the localized knowledge spillovers by sector but only capture 

intra-sectoral spillovers. Autant-Bernard and LeSage (2011) demonstrate the significant impact of 

inter-sectoral spillovers of private R&D among French metropolitan areas. However, their panel 

model is averaged across all sectors so that the marginal effect of intersectoral spillovers is not 

reported by sector. More recently, Acemoglu et al. (2016) highlight the importance of inter-

sectoral spillovers of knowledge in the U.S. as captured through a matrix of patent creation- patent 

citations. Their findings indicate that the most important spillovers come from within the industry. 

Yet, their work is performed at the national level, hence provides no guidance on how the 

geographical distance between the origin and destination locations of these spillovers may affect 

knowledge creation differently across sectors.  

This paper contributes to this literature by identifying the singular role of intra- and 

intersectoral knowledge spillovers on knowledge creation (patent counts) by sector. In addition, to 

account for geographical proximity, we classify these spillovers into three categories: i) local 

spillovers (within the county), ii) short-distanced inter-regional spillover (from neighboring 

counties located on a 50-mile radius), and iii) spillovers from the rest of the US (beyond 50 miles). 

More specifically, we focus on the five most innovative manufacturing sectors in the U.S.: 1) 

Chemical, 2) Drugs & Medical, 3) Mechanical, 4) Computer & Communication, 5) Electrical & 

Electronic. They represent about 82% of our patent data drawn from the US Patent and Trade 

Office (USPTO 2010). We study how the existing stock of research inputs impacts new knowledge 

creation by relying on an interregional innovation network of patent creation-patent citation. This 

approach and our reliance on the actual patent network allows us to recognize the complex and 
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spatially dependent nature of innovation and to improve our understanding of industrial innovation 

dynamics.  

Our sample covers 853 metropolitan counties. It allows us to get more detailed results on the 

regional and sectoral knowledge production process compared to the existing literature where the 

data are aggregated at the U.S. state level (e.g. Peri, 2005), across Metropolitan Statistical Areas 

(Anselin et al. 2000) or even at the national level (Acemoglu et al. 2016). Furthermore, we use a 

panel Tobit model with time and State fixed effects to control for the case where no knowledge 

output is recorded and for cross-sectional unobservable heterogeneity (Wooldridge 2010). Last but 

not least, knowledge spillovers are all based on the data collected by Lai et al. (2013). This dataset 

has been previously used in the literature in different contexts ((Autor et al. 2016, Moretti and 

Wilson 2017, Verhoeven et al. 2016, Galasso and Schankerman 2018).  This dataset tracks the 

actual flows of knowledge from the place where they are created to the place(s) where they are 

cited. Compared to knowledge spillovers based on geographical proximity (Anselin et al. 1997, 

Bode 2004) or collaborative work (Ponds et al. 2010, Crescenzi et al. 2016), the major advantage 

of capturing the directionality of the flows of knowledge is to allow us to explicitly identify the 

role of externalities on knowledge output.  

Relying on a Tobit estimation with fixed effects at the State level, our county-level results 

support the importance of  geographical proximity for knowledge creation and indicate that both 

local intra-sectoral as well as local inter-sectoral spillovers are important determinants of 

knowledge production. This result is valid across all the sectors. Regarding the importance of inter-

regional private and university spillovers, we observe large sectoral heterogeneity as the various 

sectors under study benefit differently from the knowledge created in other regions whether they 
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are close-by or remote. These results strongly suggest that the cumulative process of scientific 

discovery is heterogenous and complex.  

The remainder of the paper is organized as follows: Section 2 reviews the literature focusing 

on local and distant knowledge spillovers and their role on knowledge creation and innovation. 

Section 3 describes our knowledge production function, the strategy of modeling intra- and inter-

sectoral knowledge spillovers across counties and the relevant data. The estimation results and 

their interpretation are reported in Section 4, and the robustness tests are presented in Section 5. 

The last section closes with some concluding remarks.  

2. Literature Review 

2.1.	Local	and	distant	knowledge	spillovers	

Most studies on knowledge creation and innovation focus on local knowledge spillovers (Jaffe 

1986, Jaffe et al. 1993, Feldman 1994, Anselin et al. 1997). Their local extent is usually explained 

by two types of externalities. The first one is Marshall-Arrow-Romer (MAR) externalities that 

emphasize industrial specialization within the same or similar sectors. It allows to lower the cost 

of communication and transaction, thereby facilitating knowledge spillovers among firms 

(Audretsch and Feldman 2004). A well-known example is the Silicon Valley cluster where 

knowledge flows across high-technology and internet firms are galvanized through non-market 

interactions and inter-firm mobility of skilled workers (Saxenian 1994)1. The second type of local 

externalities, based on Jacobs (1969), derives from industrial diversity. She argues that a diverse 

knowledge coming from external sectors can complement a specific sector’s knowledge and thus 

 

1	Note,	however,	that	this	paper	does	not	include	the	“Internet	publishing	and	broadcasting	and	web	
search	portals”	industry	(NAICS	code	51913)	that	most	of	the	firms	in	Silicon	Valley	belong	to.	The	list	
of	manufacturing	sectors	we	focus	on	appears	in	table	1.	
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facilitate innovation. As geographical proximity contributes to the exchange of ideas (Feldman 

and Kogler 2010) and activities have become more clustered over time (Glaeser et al. 1992), both 

intra- and inter-sectoral spillovers have played an increasing role in the creation of knowledge 

(Beaudry and Schiffauerova 2009, Groot et al. 2016).  

Other studies have also paid  attention to knowledge emanating from geographically distant 

sources (Owen-Smith and Powell 2004, Trippl et al. 2009). The literature has demonstrated that 

firms with limited access to distant knowledge pools tend to be less innovative and generate less 

output than their peers (Feldman and Kogler 2010, Moreno and Miguélez 2012). For Maskell et 

al. (2006), it is the complementarity between the local knowledge pool and distant sources of 

knowledge that will promote regional innovation growth. Because each region has its own 

industry-mix and exploits local and distant knowledge pools differently (Feldman and Kogler 

2010), one should expect the relative role of distant intra- and inter-sectoral knowledge spillovers 

on local innovation to vary across sectors. To our knowledge, no previous study investigates this 

issue, hence this paper fills this gap. 

2.2.	Accounting	for	sectoral	heterogeneity	in	regional	and	sectoral	
knowledge	spillovers	

Only a handful of studies focus on the differences in regional knowledge production across 

sectors. Using U.S. state level data, the seminal work of Jaffe (1989) investigates the influence of 

university research on corporate patents across four different sectors. His study finds that the 

Drugs, Chemical and Mechanical sectors benefit from intra-sectoral university research that is 

taking place locally. Based on more detailed MSA (Metropolitan Statistical Areas) data, Anselin 

et al. (2000) also investigate how local (within MSA) university research spills over to four 

industrial sectors and, unlike the previous study, highlight that interregional (beyond the MSA 
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boundaries) spillovers of university research play a key role for some sectors. The authors find that 

the local effects from university research for the Drugs and Chemical sector are not significant, 

but the interregional externalities have a strong impact in innovation.  They justify their result by 

noticing that most chemistry departments focus on basic research for which spatial proximity is 

not of high importance. Their findings indicate also that while the Electronic and Instruments 

sectors enjoy significant local and inter-regional spillovers, the Machinery sector is the only one 

that benefits from long-distance research spillovers.  

One important element that is missing from the aforementioned studies is the presence of 

spillovers of private R&D, whether they take place within or across sectors, as they have been 

found to promote innovation as well (Wallsten 2001, Orlando 2004). Autant-Bernard and LeSage 

(2011) account for the capacity of both private and public intra- and interregional R&D spillovers 

to promote knowledge across 11 sectors of 94 French regions. They conclude that Jacobian 

externalities dominate MAR externalities when they emanate from private R&D efforts. This result 

holds true whether they look at intra- or interregional spillovers. Local Jacobs and MAR 

externalities have roughly a similar role on innovation when they come from public R&D efforts 

while at the interregional level only the MAR externalities matter. However, they do not account 

for any form of heterogeneity across sectors. In addition, the spatial extent of the knowledge 

spillovers is modeled on geographical contiguity only so that neither the geographical extent nor 

the directionality of the knowledge flows are captured in their work.  

A recent study focusing on the innovation network within and across sectors is Acemoglu et 

al. (2016) who focus on the 1975-1984 network in the U.S. The authors find that most of the 

patents are cited within the sector they belong to. Intersectoral spillovers take place mostly within 

the parent sector sub-sectors belong to (e.g. computer peripherals citing from computer 
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communication) and in a few cases across parent sectors (e.g. chemical sector citing from the drug 

& medical sector). However, their contribution does not provide us with a sense of the 

geographical extent of these spillovers as the results are for the nation as a whole and they do not 

rely on econometric techniques. Finally, based on a matrix of patent creation-patent citation, Cai 

and Li (2018) highlight a “technology network” and measure the applicability of the knowledge 

created in one sector to patenting in other sectors. Their results provide guidance on the amount of 

R&D to provide by sector.  

As such, this paper remedies to the gaps listed above by tracking the various types (intra- vs 

interregional, intra-vs intersectoral, private vs. public R&D) of knowledge flows that exist. The 

relevant data and specific modeling strategy are described in the next section. 

 

3. Empirical Model and Data 

3.1.	Regional	Knowledge	Production	Function	and	Tobit	model		

Our empirical model relies on a regional approach of Griliches (1979) knowledge production 

function using US county-level panel data. The knowledge production function is assumed to 

follow a Cobb-Douglas functional form as depicted in Equation (1) where !!"# is the knowledge 

output of sector h in county i at time t, "$,!"# is the kth knowledge input, #$ is the elasticity of the 

output with respect to the corresponding input and $!"	and	)!"# represent an individual specific 

effect and an error term respectively.  

!!"# = ∏ "$,!"#
&! 	$ ⋅ -'"# ⋅ -("#$  (1) 

The logarithm transformation of Equation (1) leads to a log-linear model that is widely used in 

empirical studies of the knowledge production function (Anselin et al. 1997, Acs et al. 2002, 

Fischer and Varga 2003, Bode 2004). 
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 As usual in the literature, we use patent data as a proxy for knowledge output (Parent and LeSage 

2008, Autant-Bernard and LeSage 2011) and work with patent applications (Cincera 1997, Ramani 

et al. 2008) instead of granted patents because the former are closer in time to knowledge creation.  

Patent application data are retrieved from the database constructed by Lai et al. (2013).2 In order 

to allocate the patent data across counties, we use the fractional counting method suggested by 

Jaffe et al. (1993). When a patent is created by N inventors, 1/N fraction of the patent is attributed 

to each inventor. Each 1/N fractional patent is geocoded to its associated county based on the 

address of the inventor. As a result, the patent data is a rational number3. Besides location, we also 

focus on the knowledge created across five manufacturing sectors: (i) chemical, (ii) drugs & 

medical, (iii) mechanical, (iv) computer & communication, and (v) electrical & electronic. Thus, 

we classify the patent applications into these five sectors based on the North American Industry 

Classification System (NAICS) defined in 2002 (Table 1).4 According to Kang and Dall’erba 

(2016a, 2016b), the metropolitan regions have a greater propensity to innovate (an average of 

150.9 patents in the MSA counties vs. 3.4 in non-MSA counties over 2003-2005) and their 

knowledge production mechanism is different from that of the non-metropolitan regions. 

Therefore, we focus on the metropolitan counties only. There were 853 of them across the 3,109 

continental US counties in 2000.  

[Insert Table 1 here] 

 
2 The files can be downloaded here https://github.com/funginstitute/downloads 
3 We rely on the USPCS-NAICS 2002 concordance file developed by the US Patent and 

Trademark Office (USPTO) to transfer all the data in NAICS format. 
4 The geographical allocation of the patent data could also be based on the address of the 

assignee(s). However, large companies use the address of their headquarter to file patents, which 

is not always the place where research took place. Using the inventor’s address to geocode the 

creation and citation of patent data can lead to a similar problem (Autant-Bernard and LeSage 

2011), but the size of the error is smaller as we assume that inventors live close to their workplace. 
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Since the minimum value of observed patent data is zero5, we follow Cameron and Trivedi 

(2009) and rely on a Tobit model for our empirical estimation where ./0120)*+
∗

 is the 

unobservable latent value of patent application and ./0120)*+ is the observed patent application 

so that:  

34./0120)*+ = 5
ln	(./0120)*+

∗ )		9:		./0120)*+
∗ > 0

0																							9:		./0120)*+
∗ ≤ 0

  

The second reason for the choice of a Tobit model comes from Autant-Bernard and LeSage 

(2011) who argue that patenting is an uncertain process. Indeed, even if R&D investments and 

innovation take place, patenting is a strategic decision that may or may not happen as it depends 

on other factors such as the cost and benefits of filing. Because we expect unobserved spatial 

heterogeneity to be present in our panel dataset that covers 2001-2008, we specify our panel data 

Tobit model with individual specific effects as follows: 

34./0120)*+ = >)*+
- ? + A)* + B)*+ 

Under the assumption of ) following a normal distribution (0,	C./), the log likelihood function 

of the model above is: 

log F" =GGHI!"# logΦK
!!"# − "!"#

- # − $!"
C

M + (1 − I!"#) KlogO K
−"!"#

- # − $!"
C

M − logσ.MQ

0

#12

3

!12

 

Where Φ(. ) and O(. ) denote the standard normal c.d.f. and p.d.f. respectively, and I!"# =

5
I. !!"#		if		!!"# > 0
0		if		!!"# ≤ 0	  . 

MLE maximizes this log-likelihood with respect to #, C./ and $2, … , $3, hence the fixed-effects 

panel Tobit model suffers from the incidental parameter problem (Neyman and Scott 1948, 

Lancaster 2000) rendering the estimated coefficients inconsistent unless T approaches infinity 

 
5 If the variables have a minimum value of zero, we add one before log transformation. 
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(Greene 2008). Four options are proposed to circumvent this problem. The first assumes that the 

$! effects are independent of the regressors "!# and the parameters can be consistently estimated 

by a random effect model  (Wooldridge 2010). However, we believe this assumption is too strong 

in our case. The second option consists of estimating the fixed effects model which requires T≥8. 

Heckman and Macurdy (1980) apply the fixed effect MLE to study female labor supply when T = 

8 and conclude that the estimators are inconsistent. Another option is the semiparametric 

estimators initiated in Honoré (1992) for truncated regression models and further developed in 

(Honoré et al. 2000)  for censored regression models.  

Here, we select yet another option, discussed in Wooldridge (2010, p. 709), which consists in 

a conditional Tobit model with time fixed effects and State fixed effects. We justify the use of the 

time fixed effects through the surge in innovative activities that three of the five sectors have 

experienced over the study period. Indeed, for the Drugs & Medical industry, the Computer & 

Communication and the Electrical & Electronic industries, the average number of patents has 

increased between 17.4% and 25.1% while the stock of private knowledge has increased between 

65.8% and 346% (see table 1). When it comes to the State fixed effects, their presence allows us 

to control for differences in State-level policies and innovative milieus. One well-known example 

is Entreprise Zones (Ham et al. 2011) but many states also have R&D tax credit incentives (Wilson 

2009), state-specific corporate tax rates and non-compete laws (Greenstone and Looney 2011). 

Among the independent variables, the stock of knowledge is a major factor of the knowledge 

production function (Griliches 1979). Here, the county-level knowledge stock is modeled through 

lagged expenditures in Research and Development (R&D) using the perpetual inventory method 

(Equation 2) as in Mancusi (2008). In the equation, X!"# and YZ!"# represent the stock of 

knowledge and the R&D expenditure in county i, sector h at time t. All R&D expenditures are 
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converted in constant 2008 U.S. dollars using each sector’s Producer Price Index from the U.S. 

Bureau of Labor Statistics.6 We assume a 15% depreciation rate ([) following Okubo et al. (2006) 

and Mancusi (2008). In order to calculate the knowledge stock of the initial year, we approximate 

the industry specific growth rate of R&D expenditures (\) by the average of the annual growth 

rate over 1990-1999 across the U.S. continental counties. This approach is used for each individual 

sector as in Mancusi (2008).  

X!"# = (1 − [) ⋅ X!"#42 + YZ!"#42		]4^		X!"2556 = _78"#%&&'
9:;

`     (2) 

We model two types of regional knowledge stocks: (i) private and (ii) academic R&D. The private 

knowledge stock in sector h (.abc/01)*+) is approximated by the R&D expenditure of private 

companies collected from Standard and Poor’s Compustat (Standard & Poor’s 2011). The dataset 

from Lai et al. (2013) links the raw assignee from patent records with the name and address of the 

assignee . Here, we use the address of these companies and their NAICS codes to allocate the R&D 

expenditures across counties and sectors. .abc/01)<+ captures R&D expenditures in the four 

sectors q which are not the sector of interest h. Thus, if significant, the coefficients associated to 

de9f]g-!"#	and de9f]g-!=# measure the importance of intra- and inter-industry externalities on 

knowledge creation respectively7.  

The regional academic knowledge stock (h2bc)+) is measured by the total amount of R&D spent 

across universities and colleges according to the National Science Foundation’s Survey of R&D 

expenditures (National Center for Science and Engineering Statistics 2013). In order to match this 

type of expenditure to a specific county, we use the address of the institutions. Since one academic 

 
6 The average of the Producer Price Index (PPI) of the NAICS sectors reported in Table 1 is used 

to calculate the annual PPI of each of our five manufacturing sectors. 
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field can contribute to several of the five economic sectors under study (e.g. electrical engineering 

is relevant to mechanical, computer & communication, electrical & electronic), it is difficult to 

distinguish between intra- and inter-sectoral externalities emanating from the academia and 

therefore we sum all academic R&D expenditures.  

Besides R&D, it is well known that human capital plays an important role in knowledge creation 

(Audretsch and Feldman 2004). For instance, Sorensen (1999) unveils that productivity gains from R&D 

investment become profitable only once human capital reaches a threshold level. If human capital levels 

are too low, R&D is unprofitable.  In order to measure the level of human capital available by county and 

industrial sector, we use the total number of Graduate (Master’s and Doctoral) or professional degree 

holders who are 25 years and over (!"#$%#&'!"#$%). Shambaugh et al. (2017) have shown that around 

70% of patent holders have a least a Master’s degree. The use of a one year lag is common in the 

knowledge production literature to alleviate any possible endogeneity problem (Ponds et al. 2010, Nesta 

and Saviotti 2005). The data comes from the 2000-2007 Integrated Public Use Microdata Series (IPUMS) 

developed by Ruggles et al. (2010). Since IPUMS classifies the occupation of the workers according to 

NAICS, we can easily allocate the number of degree holders by sector. IPUMS is surveyed based on the 

Public Use Microdata Area (PUMA), thus we match the location of the PUMA with that of the counties 

based on their 2000 U.S. Census boundaries.8  

In addition, we control for several county-specific conditions. Regional differences in the 

economic size of each sector are captured by the total number of employees in each sector 

 
8 If a PUMA area consists of more than one county, we allocate the number of degree holders of 

each sector proportionally to the counties’ total number of degree holders (for all industrial sectors) 

of which data come from the 2000 U.S. Census. This approach is used for the years 2000, 2005, 

2006, 2007. IPUMS provides personal information at the state level only for the years 2001-2004. 

As a result, we first calculate the total sum of degree holders by state and by sector and then 

distribute it across counties proportionally to their average number of degree holders over the years 

2000 and 2005. 
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(ijk)*+4>). This variable is constructed based on the same method and data as the human capital 

variable. We also control for the share of large firms in a county’s economy (l/am1)+4>). Since 

small firms capitalize better than large firms on the knowledge created in university laboratories 

according to (Acs et al. 1994), more small firms in a county can be conducive to regional 

knowledge creation. On the other hand, as large firms contribute to the higher level of 

agglomeration in a local economy (Acs and Armington 2004), their presence could be more 

beneficial to regional knowledge creation. We examine the relative role of small or large firms on 

regional knowledge creation by including the share of establishments with at least 500 employees 

in our model. This cut-off is used by the 2000 County Business Patterns to define small businesses 

and it has been used for similar purposes by Acs and Audretsch (1988) and (Anselin et al. 1997). 

The degree of industrial diversity is also included to control for the general economic structure 

of each locality (nbc1aob0p)+4>). It is measured through the index developed by Duranton and 

Puga (2000). The presence of this variable is necessary to capture the net effect of MAR vs. Jacobs 

externalities on innovation as more diverse places appear, by definition, to benefit more from the 

latter type. The calculation of this variable is reported in Equation (3) where q!"# is the share of 

industry h in county i's employment at time t and q"# the share of industry h in employment at the 

national level. The number of employees is measured across 13 industries.9 This variable changes 

over time and space but not by sector.  

 
9 The 13 industries are based on the 2000 US Census classification: 1) Agriculture, forestry, fishing 

and hunting, and mining, 2) Construction, 3) Manufacturing, 4) Wholesale trade, 5) Retail trade, 

6) Transportation and warehousing, and utilities, 7) Information, 8) Finance, insurance, real estate, 

and rental and leasing, 9) Professional, scientific, management, administrative, and waste 

management services, 10) Educational, health and social services, 11) Arts, entertainment, 

recreation, accommodation and food services, 12) Other services (except public administration, 

13) Public administration or Industries not classified. We use the 2000 U.S. Census for the 

diversity index of 2000 and the County Business Patterns for the index over 2003-2007. For the 

year 2002, the Census Bureau does not provide the number of employees for several sectors. We 
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Z9f-eq9g!!# = 1/∑ |q!"# − q"#|"             (3) 

 

In addition, we account for 1) intra-regional and inter-sectoral spillovers, 2) interregional 

and intra-sectoral spillovers, 3) interregional and inter-sectoral spillovers. Intra-regional and 

intra-sectoral spillovers are already accounted for in .abc/01)*+ since they capture expenses 

within the same county and sector as the dependent variable. We decide to have the intersectoral 

knowledge spillovers emanate from private R&D expenses only because, as noted above, 

university R&D spending in one academic field can contribute to innovation across several sectors.  

The three types of spillovers above are modeled based on Lai et al. (2013). Since this data 

allow us to track the patent creation-citation flows between all 3,109 US continental counties as 

well as the industrial sector of both the cited and citing patents, we first construct 25 (5×5 sectors) 

technological network matrices across the 3,109×3,109 counties and then use the 853×3,109 sub-

matrices to capture the knowledge flowing to the 853 metropolitan counties only. The fractional 

counting method is used here too so that we capture all 1/(O×D) knowledge flows between the 

number of inventors at the place origin O and their peers at the destination D for any pair of origin-

destination sectors. This patent creation-patent citation matrix is noted u!?
"=

. It represents the 

citation flows from sector h county i to sector q in the MSA county j. This matrix is the basis for 

the intraregional spillovers as well as the interregional spillovers (below 50 miles and above 50 

miles respectively) that will be described further below Here, we use the sum of the patent citation 

flows over 1997-2000 to model the spillovers of knowledge stocks every single year over 2001-

 

fill these data with the corresponding values from the 2003 County Business Patterns data and use 

an average of 2000 and 2002 as a proxy for 2001. 
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2003 and the sum of the patent citation flows over 2001-2004 for the spillovers measured each 

year over 2004-2008.  It is important that the two windows regarding the patent citation flows are 

neither too short or too long. The reason is that a short window leads to a low number of citations 

because there is not enough time to allow it to be cited. On the other hand, if the period is too long, 

we cannot ensure that the patents from too far back are still relevant in today’s knowledge creation.  

This split also ensures that there is no overlap between the two creation-citation matrices and their 

time lag with the measurement of the dependent variable avoids any bias coming from reverse 

causality. We do not rely on past data for the measurement of the stock of knowledge created 

outside of j (.abc/01@) because the same 15% depreciation rate used in Eq. (2) applies to R&D 

expenditure in j and obsolete R&D is not expected to have any impact on knowledge creation.  

We make use of matrix u!?
"=

 above to model first the intra-regional and inter-sectoral 

spillovers from private knowledge stock (intra-regional and inter-sectoral externalities are noted 

34 ∑ k))<*
A
<B* .abc/01)<+	or	ln	Private= in our tables of results for simplicity) as follows:  

34 ∑ k))<*
A
<B* .abc/01)<+ = {

ln∑ u!!
"=,255C4/666

=B" ⋅ de9f]g-!=# 		for	g = 2001,⋯ , 2003	

ln ∑ u!!
"=,/6624/66D

=B" ⋅ de9f]g-!=# 		for	g = 2004,⋯ , 2008
			   (4) 

We follow Kang and Dall’erba (2016a) and normalize the column sums of this matrix to represent 

the frequency of the citation flows from sector q to h within the MSA county i. 

The interregional and intra-sectoral spillovers are modeled as in equations (5) and (6). We distinguish 

the singular role of short- vs. long-distance interregional knowledge spillovers. The former (equation 5) 

have a spatial extent limited to 50 miles as in Anselin et al. (1997) and Mukherji and Silberman (2013) 

since it corresponds to the average daily U.S. commuting distance (Rapino and Fields 2013, Smallen 2004). 

Distant interregional spillovers (equation 6) correspond to externalities taking place from 50 miles to any 
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farther counties. Distances are based on the great circle distance between the centroids of counties i and 

j.  

34 ∑ k)@**
E
)B@ .abc/01@*+ =	 ln	Private ≤ 50" =

{
ln∑ u!?

"",255C4/666 ⋅ de9f]g-?"#?B! ⋅ 1(^(9, Ç) ≤ 50	É93-q) 		for	g = 2001,⋯ , 2003	

ln∑ u!?
"",/6624/66D ⋅ de9f]g-?"# ⋅ 1(^(9, Ç) ≤ 50	É93-q)?B! 		for	g = 2004,⋯ , 2008

        (5) 

 

34 ∑ .)@**
E
)B@ .abc/01@*+ = ln	Private > 50" =

{
ln∑ u!?

"",255C4/666 ⋅ ln	de9f]g-?"#?B! ⋅ 1(^(9, Ç) > 50	É93-q) 		for	g = 2001,⋯ , 2003	

ln∑ u!?
"",/6624/66D ⋅ ln	de9f]g-?"# ⋅ 1(^(9, Ç) > 50	É93-q)?B! 		for	g = 2004,⋯ , 2008

         (6) 

Where u!?
""

 is also column standardized so it captures the share of patents created in i that cite and 

rely on patents previously created in j.  

Interregional Jacobian externalities below that threshold 

(34 ∑ ∑ k)@<*
E
)B@ .abc/01@<+

A
<B* 	or	ln	Private ≤ 50=)	and above it 

(34 ∑ ∑ .)@<*
E
)B@ .abc/01@<+	or	ln	Private > 50=

A
<B* ) are built on the same model as equations (5) 

and (6) but they are captured through the normalized patent creation-citation flows u"= from the 

other 4 sectors to sector h. The same holds true for the definition of the local spillovers (noted 

lnh2bc)*+), short-distance (34 ∑ k)@**
E
)B@ h2bc@*+ or ln Univ ≤ 50) and long-distance 

(34 ∑ .)@**
E
)B@ h2bc@*+ 	or	ln	Univ	 > 	50) spillovers of academic knowledge although, as 

mentioned above, they are not disaggregated by sector.    

Tables 2 shows the descriptive statistics for the first and last years of all the variables. It is 

obvious that the Chemical and Drugs & Medical (hereafter Drugs) sectors generate relatively less 

patents than the other sectors while the high-tech sectors of Computer & Communication (hereafter 

Computer) and Electrical & Electronic (hereafter Electrical) display the largest mean values.  
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[Insert Table 2 here] 

In summary, the full model we will estimate can be written as:   

34./0120)*+ = #6 + #234.abc/01)*+ + #/34 ∑ k))<*
A
<B* .abc/01)<+ + #F lnh2bc)+ +

	#D ln Öa/Üá/01)*+4> + #G34ijk)*+4> + #H34l/am1)+4> + #C34nbc1aob0p)+4> +

#I 34 à20a/)*+ 	+ #5 34 ∑ k)@**
E
)B@ .abc/01@*+ + #26 34 ∑ ∑ k)@<*

E
)B@ .abc/01@<+

A
<B* +

#22 34 ∑ k)@**
E
)B@ h2bc@+ + #2/ 34 ∑ .)@**

E
)B@ .abc/01@*+ + #2F 34 ∑ ∑ .)@<*

E
)B@ .abc/01@<+

A
<B* +

#2D 34 ∑ .)@**
E
)B@ h2bc@+ + $J" + â"# + )!"#						                               (7) 

where )!"#~ã(0, C./); 9 = 1,⋯ , 853; 	ℎ = 1,… , 5; g = 2001, . . . , 2008;	and $J" and 

â"#	capture the State and time fixed effects respectively.                      

 

4. Estimation Results  

Table 3 shows the Maximum Likelihood estimation results of the fixed-effects Tobit models 

with a 50-mile distance cut-off. The Hausman test is significant across all specifications, indicating 

that the State and time fixed effect model is preferred over the random effect model. It confirms 

our expectations that the covariates are not uncorrelated with the fixed effects. We also report 	

C, the estimate of the standard deviation of ln(Patent). 

All specifications indicate that the local stock of private R&D leads to significant and positive 

intra-regional intra-sectoral (ln	Private") and inter-sectoral (ln	Private=) externalities on regional 

knowledge creation. Furthermore, the latter displays a greater elasticity than the former at the 5% 

significance level (one-tailed test) for sectors 1, 3, 4, and 5 at the 5% level but not for sector 2. 

These results confirm the importance of geographical proximity and associated face-to-face 

interactions to facilitate knowledge creation and knowledge spillovers (Glaeser and Scheinkman 
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2000). In addition, our results confirm our expectations by reporting that spending in education 

promotes knowledge creation (Jaffe 1989, Anselin et al. 2000, Kang and Dall’erba 2016a).  

We also find a significant positive role of the number of graduate degree holders and 

employees in a sector on the patenting activity of the same sector. These results confirm the 

economies of scale that can be achieved with spatial agglomeration in conjunction with 

specialization and MAR externalities. While the elasticity of human capital ranges from across all 

sectors, the role of employment is particularly acute in the Mechanical sector compared to the 

other sectors. Finally, we find that the greater is the presence of large establishments the more 

knowledge is created across all sectors but particularly Computer & Communications. Acs and 

Armington (2004) indicate that large firms lead to a greater local labor pool which contributes to 

agglomeration economies and, as seen earlier, innovation. The industrial diversity within the 

county also shows a positive effect on the patenting activity for all sectors.  

 

[Insert Table 3 here] 

 

The results related to all types of interregional spillovers appear in the middle part of table 3. 

Unlike the marginal effect of the local variables, spillovers display very different magnitudes and 

significance level across sectors. For instance, interregional spillovers do not display a significant 

role in the Chemical industry (column 1). This result reveals the dominance of localized face-to-

face contacts in this industry as highlighted by Mariani (2000) in the European context. On the 

other hand, both short-distance intersectoral and long-distance intrasectoral spillovers have a 

significant impact on patenting in the Drug & Medical industry. This result indicates that 

geographical proximity is not a requirement to transfer basic research knowledge in this sector. 
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This result is in tune with the findings of Gittelman (2007) that indicate that the collaboration 

network of the U.S. biotechnology industry is spread geographically. The results indicate also that 

local (ln	Private=) and short distance (ln	Private ≤ 50=) intersectoral spillovers do not display a 

statistically different marginal return, indicating that this type of externalities go beyond the 

boundaries of the county of interest. This result is in sharp contrast with the intrasectoral spillovers 

(ln	Private") of which magnitude is statistically above the one of the long-distance spillovers 

(ln	Private > 50"). Yet, the significance level of the latter matters as it indicates that the nation-

wide knowledge pipelines this sector relies on are just as important as those built on interactions 

with close neighbors (Audretsch and Feldman 1996, Sonn and Storper 2008).  

This later result holds true for the Mechanical sector too. Its estimates are reported in column 

3. This sector and Computer & Communications are the only ones for which the short-distance 

spillovers emanating from the university (ln Univ ≤50) are significant. In the case of Mechanical, 

their order of magnitude is the same as the one of the local spillovers (ln Univ). On the other hand, 

long-distance university spillovers (ln Univ > 50) do not display a significant impact. These results 

corroborate with Mansfield (1995) who finds that geographical proximity of academic research 

plays a greater role in fields that require applied R&D. Autant-Bernard and LeSage (2011) 

conclude also that the spillovers arising from the university R&D are localized. However, our 

results contradict the ones of Jaffe (1989) and Anselin et al. (2000) who find no evidence of 

localized spillovers of university research in the Machinery sector. The difference in the results 

may come from the spatial units under study as they use state and MSA level data respectively, 

which leads to more aggregate results than our county-level approach. We also find the presence 

of a competitive effect across nearby counties as intra-sectoral spillovers of private R&D 

investments (ln	Private ≤ 50")	display a negative elasticity.  
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When it comes to Computer & Communications (column 4), all the interregional spillovers 

that display a significant marginal effect are limited to short-distance. While the intrasectoral 

spillovers display a negative impact, the sign does not hold in the robustness tests we display 

further below. On the other hand, we find that intersectoral spillovers positively support local 

patenting. Their marginal effect is statistically greater than the one of the local intersectoral and 

intrasectoral spillovers, which reflects that companies in this sector rely on a network that extends 

to the counties nearby. These results are in line with those of Kang and Dall’erba (2016b) and 

Anselin et al (2000) who also conclude that the Computer & Communications industry, 

experiences significant short-distance interregional knowledge spillovers. However, their 

estimates do not differentiate intra- vs intersectoral externalities.  

Finally, the results for the Electrical and Electronic sector (column 5) show that intersectoral 

short-distance spillovers display a significant impact on patenting. Their magnitude is not as large 

as the magnitude of their respective local effects though, which suggests that frequent face-to-face 

contacts are still the main mechanism to facilitate the diffusion of ideas in this sector.   

To summarize the findings regarding spillovers, the Tobit estimations suggest that that none 

of the sectors observe positive intra-sectoral spillovers within 50 miles (ln	Private ≤ 50"). 

However, innovation in the Drugs and Medical as well as the Mechanical sectors benefits from 

long-distance intra-sectoral spillovers (ln	Private > 50"). Regarding inter-sectoral spillovers, 

results show that they do not operate long-distant and only benefit three of the sectors within the 

50 miles radius. Similar results are found for university R&D which also only show positive results 

for two sectors within the 50-mile radius. These findings stress the sectoral heterogeneity of 

knowledge spillovers on knowledge creation.  

5. Robustness checks 
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Our first robustness check focuses on the fixed effects Tobit model where the interregional 

spillovers are pooled (no split above/below 50 miles). The results are displayed in table 4. The 

significant role of intrasectoral spillovers in the Drugs & Medical as well as the Mechanical sectors 

confirm the results found earlier. Their magnitude is very similar to the one of ln	Private > 50" 

in table 3, which suggests it is mostly long-distance spillovers that drive the current results. We 

also find that intersectoral spillovers have a significant role in patenting in Drugs and Medical as 

well as Computer and Communications. Based on the results of table 3, it is very likely that it is 

short-distance spillovers that drive this finding for the latter industry. 

 

[Insert Table 4 here] 

 

The second robustness check consists in averaging the time periods noted in Eq. (7) into two 

time periods, 2001-2003 and 2004-2008, and use the matrices of patent creation-patent citation 

described in (Eqs. 4-6) only once over the corresponding time period. The estimates are reported 

in table 5. Since the local marginal effects meet our expectations, we focus on the results for the 

interregional spillovers. While they are relatively consistent with those of Table 3, a few 

differences com to light. First, the negative impact of ln	Private < 50" in the Mechanical and 

Computers & Communications sectors is not significant anymore. Second, the short-distance intra-

sectoral spillovers are not significant in the Electrical & Electronic sector anymore. The short-

distance university spillovers for Computers and Communication become non-significant too.  On 

the other hand, we observe statistically significant results for long-distance intra-sectoral spillovers 

in Computers and Communication  as well as long-distance inter-sectoral spillovers for the Drugs 
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& Medical industry. Note that the variance of any coefficient has increased compared to Table 3 

since the sample is four times smaller.  

Finally, the last robustness check we perform consists in changing the cut-off of short- vs long-

distance spillovers to 75 miles as the U.S. Department of Transportation reports that as many as 

3.3 million Americans are ‘‘stretch commuters’’ traveling more than 50 miles one-way to work. 

Stretch commuters living in rural areas drive up to 99 miles daily according to Smallen (2004). 

When we run our estimates with this new cut-off, we find that all the results are very consistent 

with those displayed here10. 

 

[Insert Table 5 here] 

 

6. Conclusion 

The regional knowledge production literature has given an increasing amount of attention to 

the role of spatial spillovers on knowledge creation. However, the bulk of empirical studies relies 

on an aggregated approach that masks the differences in the marginal effect of intrasectoral and 

intersectoral R&D investments on knowledge creation across sectors. The few exceptions (e.g. 

Jaffe (1989), Anselin et al. (2000) have highlighted the presence of sectoral heterogeneity in the 

size of the localized knowledge spillovers emanating from university research. However, they have 

not investigated how intersectoral and distant interregional knowledge spillovers matter. Autant-

Bernard and LeSage (2011) have remedied to this problem but at the cost of providing estimates 

averaged across all sectors. Furthermore, a large amount of the literature models the flows of 

regional spillovers of knowledge based on variables such as geographical proximity (Audretsch 

 
10 Complete results available from the authors upon request. 
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and Feldman 2004, Jaffe et al. 1993), technological proximity (Maggioni et al. 2011), or 

social/professional networks (Breschi and Lissoni 2009, Crescenzi et al. 2016).  These approaches 

do not explicitly account for the directionality of the flows, which can be challenging when trying 

to establish causality in an econometric model.  

This paper contributes to this literature by examining the heterogeneous role of intra- and 

interregional as well as intra- and inter-sectoral knowledge spillovers across 5 U.S. manufacturing 

sectors that cover 82% of the patents recorded in USPTO. In addition, interregional spillovers are 

measured through a matrix of patent creation – patent citation as in Peri (2005) and Kang and 

Dall’erba (2016a) that allows us to explicitly account for the directionality of the flows of 

knowledge. 

Measured over 853 US metropolitan counties and in the frame of a Tobit model with State 

fixed effects, our results show that both intra-sectoral and inter-sectoral spillovers taking place 

within a county are important determinants of knowledge production. It implies that frequent face-

to-face contacts are still an important factor for the creation of new knowledge. When it comes to 

the interregional spillovers of private and university knowledge, the relative role of each type 

depends on the industry under study suggesting that there is strong heterogeneity across sectors on 

the mechanisms of how new knowledge is created. These differences are not only visible in terms 

of different sensitivity to geographical proximity, but also depending on whether spillovers arise 

from the same industry, from others and/or from academic research.  

Our estimation results suggest three important implications for policy-makers interested in 

more efficient innovations strategies. First, both intra-sectoral and inter-sectoral externalities 

matter for innovation. It is surprising to see how much the local stock of intersectoral knowledge 

affects patenting in some sectors. As a result, various innovation strategies can be compared with 
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each other and ranked accordingly only when the cumulative process of scientific discovery across 

industries has been accounted for. Second, because close geographic proximity matters a great 

deal for the innovative capacity of each industry, policy makers need to facilitate both academic 

and private sector R&D through, for instance, Entreprise Zones and R&D tax credit incentives 

(Ham et al, 2011), and help build local networks of university-industry collaboration (Ponds et al. 

2010). Third, innovation policies need to be more attentive to the heterogeneity in the source and 

spatial extent of the interregional spillovers that affect patenting in each industry. The 

recommendations based on the traditional aggregated approach mask this heterogeneity and can 

lead to inefficient policies whereby, for instance, long-distance network would be supported while 

an industry, like Computer & Communications industry, depends on local and short-distance 

spillovers only.   
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Tables 

 

Table 1 Classification of Industrial sectors 

Sector NAICS 2002 Description 

Chemical 

325 Chemicals 

3251 Basic Chemicals 

3252 
Resin, Synthetic Rubber, and Artificial and Synthetic Fibers 

and Filaments 

3253, 3255, 

3256, 3259 
Other Chemical Product and Preparation 

Drugs & 

Medical 

3254 Pharmaceutical and Medicines 

3391 Medical Equipment and Supplies 

Mechanical 

333 Machinery 

336 Transportation Equipment 

3361, 3162, 

3363 
Motor Vehicles, Trailers and Parts 

3364 Aerospace Product and Parts 

3365, 3366, 

3369 
Other Transportation Equipment 

Computer & 

Communication 

334 Computer and Electronic Products 

3341 Computer and Peripheral Equipment 

3342 Communications Equipment 

Electrical & 

Electronic 

3344 Semiconductors and Other Electronic Components 

3345 
Navigational, Measuring, Electromedical, and Control 

Instruments 

3343, 3346 Other Computer and Electronic Products 

335 Electrical Equipment, Appliances, and Components 

Note: Classification is based on four-digit NAICS 2002 codes. When four-digit codes are not 

available for patents and private R&D expenditures, we use their three-digit codes. This 

classification is defined to make the patent data compatible with the patent citation data.  
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Table 2 Descriptive Statistics (continued): Five manufacturing sectors 

 Chemical Drugs & Medical Mechanical 
Computer & 

Communication 
Electrical & 
Electronic 

Variables 
Mean  
2001 

Mean 
2008 

Mean 
2001 

Mean 
2008 

Mean 
2001 

Mean 
2008 

Mean  
2001 

Mean  
2008 

Mean 
2001 

Mean 
2008 

Patents! 11.278 10.967 10.111 11.880 15.721 17.346 30.540 38.216 37.001 40.707 

Private! 
9.69×
10" 

5.76×
10" 

1.93×
10# 

3.20×
10# 

1.90×
10# 

1.74×
10# 

2.23×
10" 

9.96×
10" 

6.30×
10" 

1.76×
10# 

Private$ 
4.68×
10# 

7.69×
10# 

3.72×
10# 

5.07×
10# 

3.75×
10# 

6.53×
10# 

5.43×
10# 

7.27×
10# 

5.02×
10# 

6.51×
10# 

Univ 
9.66×
10" 

2.29×
10# 

9.66×
10" 

2.29×
10# 

9.66×
10" 

2.29×
10# 

9.66×
10" 

2.29×
10# 

9.66×
10" 

2.29×
10# 

Grad! 92.248 88.387 148.765 211.466 281.553 328.224 144.259 116.766 210.967 228.002 

Emp! 725.931 765.650 854.023 970.648 3,444.377 3,256.495 761.133 491.021 1,769.287 1,427.791 

Large 13.690 14.979 13.690 14.979 13.690 14.979 13.690 14.979 13.690 14.979 

Diversity 5.541 3.292 4.541 3.292 4.541 3.292 4.541 3.292 4.541 3.292 

Private ≤ 50! 65,097.92 113,014.3 161,861.3 2,303,204 225,103.1 153,028.2 32,201.6 26,867.27 396,780.9 269,864.4 

Private ≤ 50$ 101,899.9 93,855.84 125,742.5 608,469.1 1,222,438 1,078,569 5,405.042 123,132.3 454,583.9 751,299.8 

Univ ≤ 50 1,472,010 3,123,482 1,001,198 4,975,501 456,260.1 5,049,239 964,874.6 3,634,151 785,929.5 3,537,675 

Private > 50! 742,849.2 400,242.3 4,091,602 
5.62×
10" 

7,450,628 
1.04×
10" 

685,553.7 2,821,082 2,495,875 4,672,901 

Private > 50$ 2,702,108 933,815 
4.34×
10" 

3.22×
10" 

3,353,677 7,530,756 1,944,051 5,519,791 2,697,406 9,936,554 
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Univ > 50 8,659,084 
1.54×
10" 

1.74×
10" 

2.37×
10" 

9,715,928 
1.38×
10" 

1.89×
10" 

2.56×
10" 

1.95×
10" 

3.00×
10" 

Private	spillovers! 807,947.1 513,256.6 4,253,463 
5.85×
10" 

7,675,731 
1.06×
10" 

717,755.3 2,847,949 2,892,656 4,942,765 

Private	spillovers$ 2,804,008 1,027,671 
4.36×
10" 

3.28×
10" 

4,576,115 8,609,325 1,949,457 5,642,924 3,151,990 
1.07×
10" 

University spillovers 
1.01×
10% 

1.85×
10" 

1.84×
10" 

2.87×
10" 

1.02×
10" 

1.89×
10" 

1.98×
10" 

2.93×
10" 

2.03×
10" 

3.35×
10" 

Note: h stands for the sector recorded in the column, q stands for the other four sectors. ≤50 means a spillover taking place between the 
county of interest and any county located within 50 miles. >50 means a spillover taking place between the county of interest and any 
county located farther away than 50 miles. 
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Table 3 Fixed Effects Tobit Model with 50-mile distance cut-off spillovers 
Dep.: ln Patent Chemical Drugs  

& Medical 

Mechanical Comp. & 
Comm. 

Electrical 
& 
Electronic ln	Private! 	

 
0.022*** 0.026*** 0.018*** 0.030*** 0.027*** 

 (0.003) (0.002) (0.002) (0.003) (0.002) 
ln	Private" 0.051*** 0.029*** 0.040*** 0.042*** 0.035*** 

 (0.003) (0.003) (0.002) (0.002) (0.002) 
ln Univ 0.051*** 0.038*** 0.021*** 0.035*** 0.031*** 
 (0.002) (0.002) (0.002) (0.002) (0.002) 
ln	Grad! 0.206*** 0.132*** 0.128*** 0.180*** 0.169*** 
 (0.011) (0.012) (0.011) (0.011) (0.010) 
ln	Emp! 0.162*** 0.275*** 0.423*** 0.242*** 0.341*** 
 (0.017) (0.018) (0.021) (0.012) (0.017) 
ln Large 0.325*** 0.458*** 0.183*** 0.546*** 0.343*** 
 (0.076) (0.074) (0.067) (0.072) (0.063) 
ln Diversity 0.723*** 0.626*** 0.448*** 0.495*** 0.463*** 
 (0.074) (0.073) (0.058) (0.069) (0.061) 
ln	Private ≤ 50! 0.003 -0.008 -0.017* -0.029** 0.013 
 (0.014) (0.013) (0.009) (0.013) (0.008) 
ln	Private ≤ 50" -0.014 0.030** -0.010 0.083*** 0.029*** 
 (0.019) (0.015) (0.011) (0.015) (0.011) 
ln Univ ≤ 50 -0.001 0.004 0.021*** 0.018*** 0.005 
 (0.008) (0.007) (0.006) (0.006) (0.006) 
ln	Private > 50! 0.001 0.016** 0.016*** 0.008 0.004 
 (0.007) (0.007) (0.006) (0.005) (0.004) 
ln	Private > 50" -0.006 0.007 -0.004 0.006 -0.007 

 (0.009) (0.005) (0.006) (0.006) (0.005) 
ln Univ > 50 0.007 -0.005 -0.005 -0.003 0.002 

 (0.005) (0.006) (0.005) (0.004) (0.004) 
Year & State FE Yes Yes Yes Yes Yes 
      
Constant -7.598*** -8.839*** -5.451*** -9.394*** -5.562*** 
 (0.355) (0.372) (0.229) (0.308) (0.235) 
4 4.032 3.992 1.538 3.040 1.821 

 (0.088) (0.091) (0.037) (0.069) (0.042) 
Counties 853 853 853 853 853 
Time periods 8 8 8 8 8 
Observations 6,824 6,824 6,824 6,824 6,824 
Hausman p-value 0.000 0.000 0.000 0.000 0.000 

Note: Robust standard errors in parenthesis. *** p<0.01. ** p<0.05. * p<0.1 

h stands for the sector recorded in the column, q stands for the other four sectors. ≤50 means a 
spillover taking place between the county of interest and any county located within 50 miles. >50 
means a spillover taking place between the county of interest and any county located farther away 
than 50 miles.  
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Table 4 Fixed Effects Tobit Model with aggregated inter-regional spillovers   

Dep.: ln Patent Chemical 
Drugs  

& Medical 
Mechanical 

Comp. & 
Comm. 

Electrical & 
Electronic 

ln	Private! 	
 

0.022*** 0.026*** 0.018*** 0.030*** 0.027*** 
 (0.003) (0.002) (0.002) (0.003) (0.002) 
ln	Private" 0.051*** 0.029*** 0.040*** 0.041*** 0.035*** 
 (0.003) (0.003) (0.002) (0.002) (0.002) 
ln Univ 0.050*** 0.038*** 0.020*** 0.035*** 0.031*** 
 (0.002) (0.002) (0.002) (0.002) (0.002) 
ln	Grad! 0.206*** 0.132*** 0.129*** 0.180*** 0.170*** 
 (0.011) (0.012) (0.011) (0.011) (0.010) 
ln	Emp! 0.162*** 0.275*** 0.424*** 0.242*** 0.338*** 
 (0.017) (0.018) (0.021) (0.012) (0.017) 
ln Large 0.327*** 0.458*** 0.178*** 0.543*** 0.332*** 

 (0.076) (0.074) (0.067) (0.072) (0.063) 
ln Diversity 0.720*** 0.627*** 0.450*** 0.495*** 0.448*** 
 (0.073) (0.073) (0.058) (0.069) (0.061) 
ln	Private	spillovers! 0.002 0.014** 0.011** 0.002 0.007 
 (0.007) (0.006) (0.005) (0.005) (0.004) 
ln	Private	spillovers" -0.009 0.010* -0.008 0.015*** 0.005 
 (0.008) (0.005) (0.005) (0.006) (0.004) 
ln University spillovers 0.007 -0.004 0.001 0.002 -0.000 

 (0.005) (0.005) (0.005) (0.004) (0.004) 
Year & State FE Yes Yes Yes Yes Yes 
      
Constant -7.596*** -8.839*** -5.441*** -6.414*** -5.488*** 
 (0.355) (0.372) (0.229) (0.308) (0.234) 
4 4.032 3.994 1.540 3.054 1.828 
 (0.088) (0.091) (0.229) (0.069) (0.042) 
Counties 853 853 853 853 853 
Time periods 8 8 8 8 8 
Observations 6,824 6,824 6,824 6,824 6,824 
Hausman p-value 0.000 0.000 0.000 0.000 0.000 

Note: Robust standard errors in parenthesis. *** p<0.01. ** p<0.05. * p<0.1 

h stands for the sector recorded in the column, q stands for the other four sectors.  
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Table 5 Fixed Effects Tobit Model with 50-mile distance cut-off spillovers (T=2) 
Dep.: ln Patent Chemical Drugs  

& Medical 

Mechanical Comp. & 
Comm. 

Electrical & 
Electronic 

ln	Private! 	
 

0.022*** 0.022*** 0.017*** 0.028*** 0.022*** 

 (0.006) (0.005) (0.003) (0.005) (0.005) 
ln	Private" 0.051*** 0.028*** 0.037*** 0.036*** 0.038*** 
 (0.005) (0.005) (0.003) (0.005) (0.004) 
ln Univ 0.051*** 0.036*** 0.019*** 0.034*** 0.027*** 
 (0.005) (0.004) (0.003) (0.004) (0.003) 
ln	Grad! 0.311*** 0.118*** 0.206*** 0.213*** 0.225*** 
 (0.030) (0.028) (0.027) (0.028) (0.026) 
ln	Emp! 0.222*** 0.527*** 0.386*** 0.449*** 0.466*** 
 (0.046) (0.046) (0.042) (0.036) (0.042) 
ln Large 0.384** 0.396*** 0.101 0.439*** 0.229* 
 (0.160) (0.136) (0.124) (0.158) (0.127) 
ln Diversity 0.727*** 0.327** 0.383*** 0.287** 0.362*** 

 (0.163) (0.150) (0.105) (0.143) (0.123) 
ln	Private ≤ 50! -0.019 -0.011 -0.011 -0.008 0.014 
 (0.023) (0.020) (0.014) (0.021) (0.012) 
ln	Private ≤ 50" 0.004 0.065*** -0.012 0.058** 0.025 
 (0.036) (0.016) (0.017) (0.025) (0.016) 
ln Univ ≤ 50 0.001 -0.010 0.016* 0.015 0.012 
 (0.013) (0.012) (0.010) (0.012) (0.010) 
ln	Private > 50! 0.006 0.015 0.011 0.021** 0.010 
 (0.012) (0.010) (0.007) (0.009) (0.007) 
ln	Private > 50" 0.010 0.015* -0.001 -0.009 -0.012 
 (0.013) (0.009) (0.008) (0.012) (0.008) 
ln Univ > 50 0.002 -0.007 -0.007 -0.003 -0.002 

 (0.009) (0.007) (0.005) (0.007) (0.006) 
Year & State FE Yes Yes Yes Yes Yes 
      
Constant -6.811*** -7.010*** -4.184*** -5.141*** -4.818*** 
 (0.586) (0.521) (0.375) (0.489) (0.375) 
4 2.585 2.220 0.918 1.995 1.299 
 (0.112) (0.099) (0.049) (0.096) (0.062) 
Counties 853 853 853 853 853 
Time periods 2 2 2 2 2 
Observations 1,706 1,706 1,706 1,706 1,706 
Hausman p-value 0.000 0.000 0.000 0.000 0.000 

Note: Robust Sstandard errors in parenthesis. *** p<0.01. ** p<0.05. * p<0.1 

h stands for the sector recorded in the column, q stands for the other four sectors. ≤50 means a 
spillover taking place between the county of interest and any county located within 50 miles. >50 
means a spillover taking place between the county of interest and any county located farther away 
than 50 miles. 


