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Abstract: We adapt a Ricardian general equilibrium model to the setting of U.S. domestic agri-food trade 

to assess states’ vulnerability to adverse production shocks and supply chain disruptions. To this end, we 

analyze how domestic crop supply chains depend on fundamental state-level comparative advantages – 

which reflect underlying differences in states’ cost-adjusted productivity levels – and thereby illustrate the 

capacity of states to adapt to and mitigate the impacts of such disruptions to the U.S. agricultural sector. 

Based on the theoretical framework and our estimates of the model’s structural parameters obtained using 

data on U.S. production, consumption, and domestic trade in crops, we undertake simulations to 

characterize the welfare implications of counterfactual scenarios depicting disruptions to (1) states’ 

agricultural productive capacity, and (2) interstate supply linkages. Our results emphasize that the 

distributional impacts of domestic supply chain disruptions hinge on the extent of individual states’ 

agricultural productive capacities, and that the capacity for states to mitigate the impacts of adverse 

production shocks through trade relies on the degree to which states are able to substitute local production 

shortfalls by sourcing crops from other states.
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1. Introduction 

The tradeoffs between self-sufficiency versus reliance on external sources in meeting regions’ food 

needs have long been understood; however, debates over how best to structure food supply chains 

in order to maximize their resiliency continue to persist. Proponents of inward-oriented food 

systems emphasize the benefits of self-reliance, and recent work by Biedny, Malone and Lusk  

(2020) finds that in spite of the sharp polarization of American political attitudes, beliefs from 

either end of the ideological spectrum tend to favor food systems founded on proximate supply 

sources as the best means with which to promote food system resiliency.1 A common claim from 

proponents of such approaches is that as the distance between regions and their food sources 

increases, the disconnect between the adverse environmental consequences of food production 

widens, hindering regulators’ efforts to internalize the negative externalities of agricultural 

production (Clapp, 2015).2 Most recently, the challenges created for the U.S. food system from 

the onset of the COVID-19 pandemic led to wasted production, increases in food prices, and 

disruptions to key links in the food supply chain (Hobbs, 2020; Thilmany et al., 2020; Martinez, 

Maples, and Benavidez, 2021). Other recent disruptions to both international and domestic supply 

chains have highlighted their susceptibility to disruptions at critical points in the system. For 

instance, the upending of global trade networks caused by the recent temporary closure of the Suez 

Canal illustrated how disruption at a single critical point can cause widespread disruption, while 

at the domestic level, food prices can potentially raise due to this short-run fall in supply. 

In contrast, economists have long emphasized the ways in which specialization and 

interdependence through trade can facilitate access to efficiently produced products (Krugman, 

1981; Eaton and Kortum, 2002; Arkolakis, Costinot, and Rodríguez-Clare, 2012) and promote 

resiliency in the food system (Reimer and Li, 2009, 2010). Classical theories of trade and 

specialization make clear that food systems will be most efficient when they allow for regions to 

exploit differences in comparative advantage. Perhaps most importantly, the permanent 

availability of external food sources ensures that disruptions to local supply can be mitigated 

through reliance on trade partners (Ferguson and Gars, 2020; Dall’Erba, Chen, and Nava, 2021). 

 
1 Proponents of policies that promote local agriculture also raise environment and health concerns in 

addition to concerns relating to the resiliency of outward-oriented food systems emphasizing reliance on 

distant sources of supply (DuPuis and Goodman, 2005; Levkoe, 2011; Marsden, 2013). 
2 In Blay-Palmer et al. (2013), several examples of bottom-up approaches to the promotion of local 

agriculture are discussed. 
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Therefore, while inward-oriented food system approaches emphasize the disadvantages of reliance 

on distant supply sources, outward-oriented strategies for food system design tend to highlight the 

benefits arising from trade and specialization alongside the capacity of such systems to mitigate 

the impacts of negative shocks to one’s own production through interdependence and trade. 

Due to the complexity of the U.S. food system and the importance of domestic  supply and 

demand relationships in U.S. agriculture, the optimal design of the food system necessitates an 

appraisal of inter- and intra-state reliance in order to assess the advantages and disadvantages of 

each. However, while a broad assortment of work has addressed these issues in appraising food 

systems at the international level (Grant, and Lambert, 2008; Reimer and Li, 2009, 2010; Martin, 

2018), a paucity of work on food systems and trade relationships at the domestic level prevents 

researchers from analyzing these same important questions of resilience and efficacy (Smith et al., 

2017; Lin et al., 2019). In this paper, therefore, we undertake a quantitative analysis of the U.S. 

domestic food system by adapting a structural, general equilibrium model of trade based on 

Ricardian comparative advantage and gravity relationships to U.S. states’ supply and demand for 

primary crops in order to quantify the efficacy of various strategies in promoting food systems’ 

efficiency and resilience. 

An ideal approach with which to jointly consider supply, demand, and trade relationships 

between regions is the gravity model, in which bilateral trade is expressed as a function of the size 

of supply and demand in the exporter and importer, respectively, and both bilateral and multilateral 

barriers to trade. Approaches based on gravity models are ideal for assessing the welfare and 

consumption implications of various policy counterfactuals in that they are theoretically founded 

and can be derived based on either demand-based (Anderson, 1979; Bergstrand, 1985; Anderson 

and van Wincoop, 2003) or supply-based (Chaney, 2008; Chor, 2010) formulations. In settings 

where regions’ productivities – and thus, their comparative advantages, and the scope for 

specialization and interdependence – are the central focus, supply-side analyses offer the ideal 

approach with which to assess the resilience and efficiency of trade networks. Along these lines, 

the seminal work of Eaton and Kortum (2002) (henceforth, EK) develops a model which considers 

the producers’ relative comparative advantages as reflected by differences in cost-adjusted 

fundamental productivities, and which further yields a tractable framework with which to 

empirically assess welfare, consumption, and trade under alternative counterfactuals. We therefore 
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adapt the theoretical framework of EK to the setting of the domestic U.S. trade in crops in order 

to analyze and explore the properties of the U.S. food system. 

Despite its widespread use in the broader trade literature, only a few empirical studies of food 

and agriculture base their analyses on a Ricardian notion of comparative advantage. Similar to our 

work is that of Reimer and Li (2009, 2010) that exploit this formulation at the international level 

to study how yield variability across countries determines the welfare of consumers, finding that 

openness to trade increases countries’ welfare whenever they experience adverse yield conditions. 

Recent work by Heerman (2020) incorporates agro-ecological conditions into the Ricardian setting 

as a determinant of productivity, while Devadoss, Ugwuanyi, and Ridley (2021) augment the 

Ricardian setting with Heckscher-Ohlin-style endowment effects. In a similar fashion, we adapt 

and estimate the EK model in order to study U.S. states’ food vulnerability in the existing domestic 

food system and to assess the efficacy of the system under various policy counterfactuals. 

To analyze these issues, we consider two distinct counterfactual scenarios. First, the impacts 

of shocks to individual states’ productivities are simulated as arising through reductions in each 

state’s agricultural capacity – a structural parameter (described in detail below) that governs each 

state’s agricultural productivity. Second, food supply chain disruptions are modeled by 

significantly increasing the costs of interstate trade between each pair of states. To assess the 

distributional impacts under these various counterfactuals, we construct a ranking of relative 

comparative advantage to pinpoint how states’ underlying relative productivity levels as a key 

determinant of food vulnerability in each of our simulations. We find that the distribution of 

welfare losses depends on each state’s ability to substitute consumption sources, which depends 

on both its own fundamental productivity and on its ability to efficiently source crops from other 

states. 

Our work makes three primary contributions to the literature on food security and trade. First, 

our approach is based on a comprehensive but tractable model of the U.S. market for crops that 

can be employed to analyze a large array of counterfactuals concerning food security in the United 

States. This approach accounts for the heterogeneity of farmers’ productivities by incorporating 

and estimating producer-specific efficiency terms. In addition, we recognize food processors and 

other intermediate users as the main consumers of farmers’ production and isolate their substitution 

effect. Secondly, we construct a state-level ranking of relative comparative advantage using data 

on domestic interstate trade. While most Ricardian trade studies recognize competitiveness (i.e., 
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the exporter’s relative cost-adjusted productivity) and openness (i.e., the importer’s relative ease 

of access to externally sourced products) in their applications, researchers do not exploit the 

ranking and rather focus on the decomposition of the determinants of productivity and comparative 

advantage. We use this ranking of relative comparative advantage in the U.S. food system to study 

the mechanisms that shape welfare losses in our food vulnerability counterfactuals. 

Due to the challenges associated with collecting domestic trade data, our third and final 

contribution relates to expanding the body of work analyzing trade in domestic settings, a literature 

that remains nascent in spite of the profound importance of domestic trading relationships in the 

United States and elsewhere. One benefit afforded by this setting is that U.S. domestic trade is 

absent of non-market barriers such as tariffs, and focusing on domestic trade thereby presents the 

opportunity to study the market mechanisms that govern trade and welfare distributions absent of 

policy confounders. To our knowledge, our study is the first to adopt a general equilibrium 

Ricardian approach to modeling productivity and domestic trade in agriculture at a regional (sub-

national) level in a modern setting.3 

The remainder of the paper is organized as follows. The next section describes our extension 

of the formulation of EK, and its implications for the U.S. domestic market for crops. Section 3 

presents our empirical strategy. First, we describe how we process the data to capture the economic 

realities of the U.S. domestic crop market. We then econometrically estimate the structural model 

parameters necessary for our post-estimation simulations and conduct a decomposition of each 

state’s comparative advantage. In section 4, we describe our simulation strategy and then present 

and discuss the results from our counterfactuals. Finally, we offer concluding remarks in section 

5. 

 

2. A Ricardian trade model of U.S. domestic crop production 

As described earlier, we adapt the canonical EK formulation to the setting of domestic U.S. crop 

trade in order to assess how welfare, production, and consumption respond to disruptions in the 

U.S. domestic food system. In this section, we recount the key features of the EK model and 

describe how its components correspond to the U.S. domestic system, and how the modelling 

framework will allow us to (1) tie the model’s equilibrium relationships on production, 

 
3 Donaldson (2018) employs a Ricardian model of agricultural productivity and sub-national trade in the 

context of colonial India. 
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consumption, trade, and welfare to observed data, and (2) empirically estimate the model’s 

fundamental parameters in the setting of U.S. domestic trade in crops. 

On the supply side, we denote producers (farmers) by i and refer to them as exporters, 

producers and the origin of the commodity interchangeably. Producers operate under different 

weather, technology and land characteristics across U.S. states.4 We capture their heterogeneity 

with a land productivity term denoted as 𝑎𝑖(𝑙), where l indicates commodity (with 𝑙 ∈ [0,1]), a 

technological productivity-augmenting factor denoted as 𝑧𝑖, and farmers’ production costs denoted 

as 𝑐𝑖 (Eaton and Kortum, 2002; Heerman, 2020). We denote final prices as 𝑃𝑖𝑗(𝑙) and bilateral 

trade costs as 𝑡𝑖𝑗. They distinguish the source of the commodity i and the location of consumption 

j5. Assuming constant-returns-to-scale technology and perfectly competitive output and input 

markets, the final price is related to costs of production, the producer’s efficiency, and bilateral 

trade costs as given by: 

 𝑃𝑖𝑗(𝑙) =
𝑐𝑖

𝑧𝑖𝑎𝑖(𝑙)
𝑡𝑖𝑗 . (1) 

The producer-specific productivity term, 𝑧𝑖, is assumed to be drawn from a Fréchet probability 

distribution, 𝑧𝑖~𝐹𝑖(𝑧) = 𝑒−𝑇𝑖𝑧−𝜃
. Here, 𝑇𝑖 > 0 is a producer-specific parameter that governs a 

region’s productivity outcome, so as 𝑇𝑖 grows larger, the probability of drawing a large value for 

the idiosyncratic efficiency outcome 𝑧𝑖 increases. We refer to 𝑇𝑖 as agricultural capacity. The 

parameter 𝜃 > 1 is common across producers and governs the dispersion of the productivity draws 

of individual producers. As 𝜃 tends to infinity, the probability of any individual region maintaining 

a large comparative advantage decreases (i.e., large 𝜃 values imply that productivity differences 

between regions will be minimal and differences in regions’ comparative advantages will therefore 

be small). The employment of the Fréchet distribution is a realistic approach since its quality of 

focusing on extreme values captures both individual producers’ productivity and the overall 

distribution of comparative advantages across all producers. 

 
4 A vast existing literature analyzes the heterogeneity of farmers’ responses to weather and climate 

conditions. Starting with their canonical Ricardian approach, Mendelsohn, Nordhaus and Shaw (1994) 

forecast that climate change will create winners and losers in U.S. agriculture depending on the best use of 

farmers’ land. Cai and Dall’erba (2021) offer a review and a test of the more recent contributions that add 

heterogeneous producers’ resilience to weather shocks depending on geographical location. 
5 Bilateral trade costs are modeled in a multiplicative (“iceberg”) fashion and assuming that there are no 

intra-region trade costs (i.e., 𝑡𝑖𝑖 = 1). 
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In turn, we consider food processing plants and other intermediate users of crops as the 

demand side (as final household demand comprises a comparatively small share of primary crops’ 

use in the United States). We index these intermediate users by j, and we refer to them as importers, 

consumers and the destination of the commodity interchangeably. Consumers utilize farmers’ 

crops according to a CES technology depicted in Equation (2): 

 𝑄𝑗(𝑙) = [∫ 𝑄𝑖(𝑙)
−(1−𝜎)

𝜎
1

0
𝑑𝑙]

−𝜎

(1−𝜎)

, (2) 

where 𝜎 > 0 is the elasticity of substitution, and 𝑄𝑗(𝑙) denotes the quantity of good l consumed 

by j from source i. For simplicity of notation, we omit l from the rest of the description of the 

model. 

 Next, the Fréchet distribution, Equation (1), and Equation (2) are combined to retrieve a 

distribution of final prices: 𝐺𝑗(𝑝) = 1 − 𝑒−Φ𝑗𝑝𝜃
. Here, Φ𝑗 = ∑ 𝑇𝑖(𝑐𝑖𝑡𝑖𝑗)

−𝜃𝐼
𝑖 , where I denotes the 

set of all producers, ultimately connects all regions’ technologies, production costs and bilateral 

trade costs into the final price faced by purchaser j. This relationship is illustrated in Equation (3): 

 𝑝𝑗 = 𝛾 [∑ 𝑇𝑖(𝑐𝑖𝑡𝑖𝑗)
−𝜃𝐼

𝑖 ]
−

1

𝜃
, (3) 

where γ = Γ (
𝜃+1−𝜎

𝜃
) and Γ is the gamma function. The model thus captures a market where each 

profit-maximizing producer offers a different price to each expenditure-minimizing consumer 

determined by the producer’s technology/productivity parameter 𝑇𝑖 in conjunction with unit 

production costs 𝑐𝑖 and trade costs 𝑡𝑖𝑗. In turn, the intermediate user possessing the production 

technology expressed by Equation (2) sees all prices and chooses the lowest one. Therefore, the 

allocation of commodities reached by the producers and consumers yields the market equilibrium 

illustrated in Equation (3). 

To empirically consider equilibrium deviations and their welfare consequences, the structural 

parameters 𝑇𝑖, 𝜃, and 𝑡𝑖𝑗 are connected with information on production, consumption, and bilateral 

trade between regions. Let 𝑋𝑗 = ∑ 𝑋𝑖𝑗
𝐼
𝑖  be region j’s expenditures on commodities from all regions, 

where 𝑋𝑖𝑗 is the value of trade going from i to j (including j’s purchases from itself). The 

distribution of prices introduced earlier implies that the fraction of a state’s expenditure on crops 

from any state i is equal to the probability that the state i offers the lowest price. Thus, trade shares 

are connected to the structural parameters as seen in Equation (4): 
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𝑋𝑖𝑗

𝑋𝑗
=

𝑇𝑖(𝑐𝑖𝑡𝑖𝑗)
−𝜃

∑ 𝑇𝑖(𝑐𝑖𝑡𝑖𝑗)
−𝜃𝐼

𝑖

. (4) 

 Equation (4) has two empirical properties regarding short-run substitution behavior in the 

face of extreme weather events6. By simulating a region’s decline in crop yields through a 

reduction in the value of 𝑇𝑘, Equation (4) implies that if a region is impacted by some adverse 

shock to its production (for instance, adverse weather conditions during the growing season), the 

region will be obliged to rely more on imports. On the other hand, if the shock to production affects 

instead any of the region’s import sources, then the region will import less from the affected 

producer7. 

 Because crop production combines several inputs, we assume that harvesting a given land 

area utilizes the operating inputs labor and land together with intermediate inputs (e.g., seed and 

fertilizer) based on a Cobb-Douglas function: 

 𝑐𝑖 = (𝑤𝑖
𝛼𝑟𝑖

1−𝛼)𝛽𝑝𝑖
1−𝛽

= λ𝑖
𝛽

𝑝𝑖
1−𝛽

, (5) 

where 𝑤𝑖 is the wage rate, 𝑟𝑖 is the land rental rate, 𝛼 is the share of operating expenses from labor 

and land inputs (denoted 𝜆𝑖), and 𝛽 is the labor and land share of production costs. 𝑝𝑖 reflects the 

price index for intermediate inputs, which comprise a share of production costs equal to 1 − 𝛽. 

We additionally normalize Equation (4) by multiplying it by domestic sales, (
𝑋𝑗

𝑋𝑗𝑗
), and thus obtain 

Equation (6). A final step that allows for relative prices to be eliminated from the model (and 

therefore for regions’ consumption shares to thus be expressed as a function of operating expenses, 

fundamental productivity levels, and trade costs) involves combining the expression for 

intermediate use with Equation (3) into Equation (6): 

 
𝑋𝑖𝑗

𝑋𝑗𝑗
=

𝑇𝑖

𝑇𝑗
(

𝜆𝑖

𝜆𝑗
)

−𝜃𝛽

(
𝑝𝑖

𝑝𝑗
)

−𝜃(1−𝛽)

𝑡𝑖𝑗
−𝜃, (6) 

which thereby generates the trade-share equation which will be the relationship of primary interest: 

 
6 Let 𝜋𝑖𝑗 = 𝑋𝑖𝑗/𝑋𝑗. Then ∂𝜋𝑖𝑗/ ∂𝑇𝑗 < 0, i.e., there is an inverse relationship between region j’s expenditures 

on goods from producing region i and the level of j’s agricultural capacity. Further ∂𝜋𝑖𝑗/ ∂𝑇𝑖 > 0, i.e. there 

is a positive relationship between region j’s expenditure on goods from producing region i and the level of 

i’s own agricultural capacity. 
7 Dall’erba, Chen and Nava (2021) provide empirical evidence of producers substituting domestic 

intermediate inputs for imports when U.S. states are impacted by drought events. 
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𝑋𝑖𝑗

′

𝑋𝑗𝑗
′ = (

𝑇
𝑖

1
𝛽

λ𝑖
𝜃) (

λ𝑗
𝜃

𝑇
𝑗

1
𝛽

) 𝑡𝑖𝑗
−𝜃, (7) 

where the logarithm of the left-hand side is given by ln 𝑋𝑖𝑗
′ = ln 𝑋𝑖𝑗 − [

(1−𝛽)

𝛽
] ln (

𝑋𝑖

𝑋𝑖𝑖
) and ln 𝑋𝑗𝑗

′ =

ln 𝑋𝑗𝑗 − [
(1−𝛽)

𝛽
] ln (

𝑋𝑗

𝑋𝑗𝑗
), which is defined as normalized trade. 

 Equation (7) is a version of the gravity equation expressed in terms of expenditure shares 

rather than absolute trade volumes, in which the expressions in parentheses are the size terms8. In 

contrast to gravity equations derived from the demand side, normalized trade depends primarily 

on the regions’ comparative advantages arising from differences in cost-adjusted productivity 

levels. For example, the size term associated with the exporter increases as the exporting region 

becomes more productive (i.e., 𝑇𝑖 increases), but decreases as the exporting region’s production 

expenses rise (i.e., λ𝑖 increases). The technology-expense relationship is inverted for the importer. 

The more expensive it is for an importer to produce due to high inputs prices (i.e., λ𝑗 increases), 

the more the region is likely to rely on imported consumption. In contrast, the more productive a 

destination region becomes (i.e., 𝑇𝑗 increases), the greater is the region’s reliance on domestic 

production. 

 Having established the relationship characterizing the determinants of bilateral trade, we 

can define our welfare measure as changes in consumers’ real expenditure on crops. First, each 

region’s aggregate expenditures can be obtained as 𝑌𝑖 = 𝑐𝑖𝐿𝑖, where 𝐿𝑖 is the number of harvested 

acres in i. Thus, Equation (4) can be manipulated to analyze a region’s income through Equation 

(8): 

 𝑐𝑖𝐿𝑖 = ∑
𝑇𝑖(𝑐𝑖𝑡𝑖𝑗)

−𝜃

∑ 𝑇𝑘(𝑐𝑘𝑡𝑘𝑗)
−𝜃

𝐾

𝑋𝑗𝐽 . (8) 

Using hat-algebra, which allows us to specify the model in terms of changes from the equilibrium 

(Dekle, Eaton and Kortum, 2007), we define a measure of changes in regions’ equilibrium 

expenditures that arise from changes in the structural elements such as production costs (𝑐𝑖), 

fundamental productivity (𝑇𝑖) and trade costs (𝑡𝑖𝑗) as given in Equation (9): 

 
8 A further re-arrangement of the equation’s components allows us to define 𝑤𝑖

𝜃 and 𝑇𝑗
1/𝛽

 as multilateral 

resistance terms (as discussed in Anderson and van Wincoop (2003) and others) that inhibit trade between 

the two regions. 
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 𝑌𝑖𝑐�̂� = 𝑇�̂��̂�𝑖
−𝜃 ∑

�̂�𝑖𝑗
−𝜃𝜋𝑖𝑗

∑ 𝜋𝑘𝑗𝐾 �̂�𝑘𝑐�̂�
−𝜃 𝑋�̂�𝐽 , (9) 

where the hat notation describes relative changes in a variable’s value. Thus, 𝑐�̂� =
𝑐𝑖

′

𝑐𝑖
 is the change 

in farmers’ operating expenses per harvested acre, 𝑇�̂� =
𝑇𝑖

′

𝑇𝑖
 is the change in agricultural capacity, 

and 𝑋�̂� is the change in expenditure. 𝜋𝑖𝑗 =
𝑋𝑖𝑗

𝑋𝑗
 is a bilateral trade/expenditure share that indicates 

how much of j’s expenditure comes from i in the baseline equilibrium. Changes in trade costs are 

expressed as �̂�𝑖𝑗
−𝜃 = 𝑒𝜏, where 𝜏 = 0 if no change in bilateral trade costs is analyzed. 

 Finally, we define consumers’ change in nominal expenditure in state i as 𝑋�̂� =
𝑌𝑖𝑐�̂�+𝐷𝑖

𝑋𝑖
, 

where 𝐷𝑖 is an additive component to account for trade imbalances (since we assume, as in EK, 

that trade is balanced). Then, nominal expenditure change is normalized by change in prices: 𝑃�̂� =

[∑ 𝜋𝑘𝑖𝑘 �̂�𝑘�̂�𝑘
−𝜃]

−1/𝜃
 in order to express welfare impacts under various counterfactuals in terms of 

changes in real expenditures. Therefore, Equation (9) is reduced into our final expression for 

welfare given by Equation (10), where 𝑊�̂� is the change of welfare in i:9 

 𝑊�̂� =
𝑋�̂�

𝑃�̂�
. (10) 

 The welfare impacts of disruptions that affect farmers’ production can be studied by 

solving the previous system of equations with simulated values for �̂�. Similarly, we can study 

perturbations to bilateral trade costs, such as those caused by disruptions in the food supply chains 

between states, with simulated values for �̂�𝑖𝑗
−𝜃 10.  

 

3. Empirical Strategy 

In this section, we first discuss the databases and the data treatment employed in our analysis. We 

then use these data to recover the necessary structural parameters to conduct our simulations in a 

two-step approach. The final sub-section describes the implied relative comparative advantages of 

U.S. states in the domestic market for crops. 

 
9 Because our welfare measures are defined in terms of changes in real expenditures, welfare measures can 

be comparable across U.S. states. The theoretical model of EK models regions as representative consumers, 

which can be thought of as the average consumer in each region. In that sense, the average consumer in a 

U.S. state can be compared with that of another state. 
10 The system of equations described here can be easily solved using the tools provided in Baier, Yotov, 

and Zylkin (2019) and the Stata statistical software. 
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3.1 Data 

U.S. crop markets are comprised of multiple producers with heterogeneous production 

technologies, but there are only three major consumers of U.S. crops: food processors and other 

intermediate users that buy crops for processing, exporters that resell U.S. domestic production 

overseas, and households that buy unprocessed crops such as fruits and vegetables. This distinction 

has empirical implications, as substitution effects (i.e., 𝜎 in Equation (2)) are likely to be different 

depending on the type of demand. For example, exporters’ demand for domestic crops is 

determined by international consumers, while food processing plants’ demand for domestic crops 

is an intermediate step in the mainly domestic food supply chain.  

 To homogenize consumption and to account for the substitution effects between crops 

varying across different domestic purchaser groups, we drop foreign trade from our analysis. One 

concern that might arise is that such a restriction limits the comprehensiveness of our analysis of 

crop production. We study whether our modelling decision is a limitation using our main dataset, 

the U.S. Freight Analysis Framework (FAF4). FAF4 contains aggregates of crops as classified by 

the Standard Classification of Transported Goods (SCTG), based on national-level input-output 

relationships. SCTG 02 refers to the crop aggregation comprising cereals and grains, while SCTG 

03 encompasses fruits, vegetables, oilseeds such as soybeans, and a handful of other assorted 

primary food crops. The share of U.S. crop production that is exported is roughly 10% with the 

largest part being SCTG 02. In addition, our conceptual mathematical model developed in the 

previous section characterizes food processing plants as the main consumer of farmers’ crops. 

Only 12%  of U.S. crop production goes directly to households, and therefore the large majority 

of primary U.S. crop production goes to domestic intermediate uses. 

The Bureau of Transportation Statistics (BTS) and the Federal Highway Administration 

(FHWA) developed the FAF4 data in an effort to impute domestic data flows between all U.S. 

states (including intra-state flows, i.e., states’ trade with themselves) for several commodities and 

is based on the BTS Commodity Flow Survey (CFS) for most types of commodities; however, 

because the CFS treats goods transported by agricultural firms as outside of its scope, the FAF4 

dataset uses information from the U.S. Department of Agriculture’s Census of Agriculture to more 

accurately model the true extent of domestic trade flows in farm products. Our measure of crop 

trade flows is constructed by aggregating SCTG 02 (cereal crops) and SCTG 03 (fruits and 
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vegetables, and a handful of other crops such as soybeans). We confine our focus to the lower 48 

U.S. states, as Alaska and Hawaii are not large agricultural producers and face a significantly 

different trading environment relative to contiguous U.S. states. 

Table 1 describes the data for each of the variables used in our analysis. The top part of the 

table describes dyadic variables that capture attributes about the relationship between two states. 

Here, we consider geographical distance and whether two states share a contiguous border, two 

standard measures of geography-based trade costs from the gravity literature (Larch and Yotov, 

2016). To measure the distance between any two states (in kilometers), we calculate the distance 

between the states’ centroid in a shapefile using the Geoda software. The bottom part of the table 

describes monadic variables that capture attributes specific to individual states that will be used to 

estimate the comparative advantage dispersion parameter 𝜃. Imports and exports are created using 

FAF4 data to describe trade flows. Both measures are in millions of 2017 U.S. dollars. Population 

density, which we will use as an exogenous predictor of operating costs in an instrumental variable 

analysis below, is collected from the 2010 U.S. Census Bureau of Statistics and is measured in 

population per square kilometer. Operating expenses per harvested acre are obtained from the 2017 

U.S. Census of Agriculture and are measured in 2017 dollars. Climate variables that affect 

agricultural output during the  Summer are precipitation and temperature during summer. 

Precipitation is measured in cubic centimeters, and temperature is measured in degrees Celsius. 

Weather data are collected from the Parameter-elevation Regression on Independent Slopes Model 

(PRISM) data base over the 20 years period between 1997 and 2017. Then, weather data are 

transformed into climate by taking the average of each variable over time for each location 

(PRISM, 2011). 

Because virtually all agricultural activity occurs outside cities and our climate variables 

described earlier could be influenced by urbanization, we follow a two-step aggregation of our 

data variables. First, all data are obtained at the county level for all counties in the contiguous 

United States. Next, metropolitan and highly populated counties are dropped (Dall’Erba and 

Dominguez, 2016)11. Finally, we calculate state averages excluding metropolitan and high 

population counties. This aggregation technique allows us to reduce weight from highly populated, 

urbanized regions with little agricultural production. 

 

 
11 We define the population density cutoff at the county level is 1,600 persons per square mile. 
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3.2 Recovering Structural Parameters 

Recovering the structural parameters 𝜃 and 𝑇𝑖 requires a two-step approach. First, Equation (7) is 

parameterized with the log-linearization of the expression. Equation (12) is the regression model, 

where the size terms are denoted by 𝑆𝑖 for the exporter and 𝑆𝑗 for the importer and are captured 

through the use of importer and exporter fixed effects. The error term is 𝜖𝑖𝑗. Then, size term 

estimates are used in a second-step as the dependent variable in the estimation of Equation (13), 

where the size terms come from Equation (7) and are denoted as 𝑆�̂� and 𝑆�̂� for the exporter and the 

importer respectively: 

 ln
𝑋𝑖𝑗

′

𝑋𝑗𝑗
′ = −𝜃 ln 𝑡𝑖𝑗 + 𝑆𝑖 − 𝑆𝑗 + 𝜖𝑖𝑗 , (12) 

 �̂�𝑘 = 𝛼 +
1

𝛽
ln 𝑇𝑘 − 𝜃 ln 𝜆𝑘 + 𝜈𝑘 , (13) 

where 𝜈𝑘 is the error term. In contrast with Equation (12), in which 𝜃 is attached to a variable (𝑡𝑖𝑗) 

that is difficult to directly measure empirically, 𝜃 can be recovered from Equation (13) since it is 

associated with an observable variable (𝜆𝑘, or operating expenses). We assign a value of 0.12 to 

the share of intermediate inputs (1 − 𝛽) based on input-output data from IMPLAN12. The 

 
12 We consider 1 − 𝛽 = 0.12, the weighted average of intermediate-input shares in our crop aggregations 

for SCTG02 and SCTG03 (for example, fruits and vegetables), acknowledging that some crops in our 

aggregation require higher operating expenses because of differences in labor and/or land intensity in 

production. For robustness, we consider the impact of alternative assumptions on 𝛽 for our simulation 

results, and find that values in the range 1 − 𝛽 ∈ [0.08, 0.21] generate qualitatively similar results in our 

counterfactual simulations. 

Table 1: Trade, crop operating expenses, population density and climate variables in 2017 

Dyadic Variables  Mean  S.D.  Min  Max  

Distance  1827.27  1295.40  0.00  5179.18  

Contiguity  0.10  0.29  0.00  1.00  

Monadic Variables  Mean  S.D.  Min  Max  

Imports 9,280.78  9,934.75  233.99  43,387.97  

Exports  9,280.78  10,927.41  105.50  46,177.39  

Operating expenses per harvested acre  708.75  492.77  75.83  2478.09  

Population density  83.85  61.69  6.46  286.11  

Summer temperature  24.25  3.70  18.27  32.30  

Summer precipitation  42.27  16.68  3.33  82.93  
Notes: The number of observations for our dyadic variables is 2,304, while the number of observations 

for our monadic variables is 48. All monetary measures are in 2017 U.S. dollars. The value of imports 

and exports are created using FAF4. Distance is measured in kilometers. Population density is measured 

in population per square kilometers. Precipitation is measured in cubic centimeters, and temperature is 

measured in degrees Celsius. 
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estimation of Equation (12) is carried out through the use of dummy variables. Since bilateral trade 

costs are not readily observable, we approximate them through the use of two variables reflecting 

geographical determinants of trade costs: a contiguity dummy that indicates whether two states 

share the same border and six dummies corresponding to the distance bins (0, 865], (865, 1730], 

(1730, 2595], (2595, 3460], (3460, 4325] and (4325, Max]13. Since we assume that intra-trade has 

zero cost (i.e., 𝑡𝑖𝑖 = 1), then all dummies for distance are interpreted relative to intra-trade costs. 

Importer and exporter fixed effect dummy variables are included, but normalized to sum to zero. 

Notice that the estimation of Equation (12) will drop all zero-trade observations (i.e., 𝑋𝑖𝑗 = 0). 

Because trade between regions is not symmetric, the variance-covariance matrix is assumed to 

have diagonal elements 𝜎1
2 + 𝜎2

2 that affect both two-way trade and one-way trade, and certain 

nonzero off-diagonal elements 𝜎2
2 that affect only two-way trade. For this reason, we estimate 

Equation (12) by feasible generalized least squares14 (FGLS). 

 Figure 1 reports estimates from Equation (12). In panel (a), we report the proxy estimates 

for bilateral trade costs (using trade data aggregated across the two SCTG commodity groupings). 

As expected, two states sharing a contiguous border tends to be associated with more trade between 

the states. Our results indicate also that trade volumes decrease with distance, but the marginal 

impact of distance on trade becomes attenuated in the last two distance bins. We attribute this to 

freight mode decisions. Our FAF4 data shows that while most crops are shipped within short 

distances by truck, the volume shipped by truck decreases with distance but increases for rail and 

barges, modes for which long distances incur only small marginal transportation costs. 

 In panel (b), estimates of the fixed effects are depicted graphically. The estimates 

associated with the size terms are structurally symmetric as shown in Equation (7). Deviations 

from symmetry represent non-market influences that affect either the imports or exports from a 

region. For instance, as described earlier, each set of fixed effects can be interpreted as either 

competitiveness or openness for the exporter and importer side respectively. In an international 

trade context, this distinction typically reflects institutional and policy differences that affect 

 
13 Using distance bins, as supposed to a continuous distance measure, allows us to assign no ad-hoc 

parametrization to Equation (12). No significant difference is found when using a continuous measure of 

distance when running Equation (13). 
14 Recent papers that estimate Equation (12) report employing versions of the Poisson pseudo-maximum 

likelihood (PPML) estimator to address the heteroskedasticity and zero-trade issues. In our two-step 

estimation to estimate 𝜃, we do not advise the employment of PPML since the second step, Equation (13), 

is a linear estimator. 
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specific countries, such as weak government institutions, which impact exports, and policies that 

encourage citizens to consume domestically sourced goods, which affect imports. We test for 

symmetry of the fixed effect estimates by testing the difference between each pair of estimates. 

Furthermore, the imposed symmetry of our structural model prevents us from testing whether point 

estimates are statistically different from zero since each set of size-term fixed effects crosses zero. 

For this reason, the symmetry test also serves as a significance test. The point estimates are shown 

without confidence intervals, but the confidence interval corresponding to the test of whether each 

pair is equal to each other is shown. 

Figure 1: Estimation results from gravity equation: Distance and importer- and exporter-size 

effects. 

  

(a) Bilateral trade costs (b) Size terms 

Note: R2 is 0.97 with 1,334 observations. The imposed symmetry of our structural model 

prevents us from testing whether point estimates are statistically different from zero since each 

set of size term fixed effects crosses zero. For this reason, we instead test whether the absolute 

values of point estimates in each pair of size terms is equal to each other. The point estimates 

are shown without confidence intervals, but the confidence interval for the test of whether each 

pair is equal to each other is shown. 

 

 Using estimates for the size terms, we estimate Equation (13) to recover 𝜃. Since 

agricultural capacity (𝑇𝑘) is not observed, we proxy it using historical precipitation and 

temperature for each U.S. state, following a quadratic polynomial with an interaction term. 

Because we expect high operating expenses per acre to be associated with high levels of 

agricultural capacity (e.g., high operating expenses might be indicative of a region having more 

productive soil, and thus higher levels of demand for inputs), we employ the two-stage least 

squares (2SLS) estimator. Our instrumental variable is average population density in rural counties 

within each U.S. state. We expect that the wage component in Equation (5) is affected by 
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population density, so our use of this variable ensures that our instrument affects operating 

expenses per acre, but not other determinants of agricultural capacity such as climate15. 

Table 2 reports the results from the estimation of Equation (13). The exporter columns use 

the size terms related to the exporter, and the importer columns use the size terms related to the 

importer. The first column employs the OLS estimator and the second column the 2SLS estimator. 

The variance inflation factors of the climate variables are above 100 in every regression, so the 

climate estimates are highly correlated16. Our conceptual framework predicts 𝜃 to be positive and 

greater than 1, so the coefficient associated with operating expenses per harvested acre must be 

negative and less than 1. The results from the OLS estimations show that 𝜃 is not statistically 

different from zero. As expected, correcting for endogeneity leads to larger and statistically 

significant estimates of 𝜃, which again reflects the notion that unobserved aspects of productivity 

might be correlated with operating expenses. The specification based on the exporter size terms 

yield an estimate 𝜃 = 2.962, while the estimates obtained by using the importer size terms 

generate a slightly larger value of 𝜃 = 3.804. Table 2 also reports the first stage and allows us to 

reject the hypothesis that our instrument is weak17. 

We compare our estimates of the comparative advantage dispersion parameter with those of 

Reimer and Li (2010) who estimate this parameter for crop yields at the international level. Their 

point estimates for 𝜃 are no lower than 2.52 and no higher than 4.96. Using a generalized method 

of moments approach, they estimate 𝜃 = 2.83 compared to a value of 𝜃 = 2.52 using maximum 

likelihood and a parametrization of the Fréchet distribution. The authors also report a larger 

estimate of 𝜃 at 4.96 based on using the relative prices of the commodities under consideration to 

proxy for elements of the EK model. However, Simonovska and Waugh (2014) show that the use 

of such proxies can systematically generate overestimates 𝜃. Therefore, because our importer side 

 
15 The threat to the exclusion restriction when population density is the aggregate of the whole state is that 

climate change is affected by activities related to population density such as traffic and polluting industries, 

which are typically concentrated in cities and their surrounding areas. Our instrument is weakly and 

negatively correlated with temperature in the growing season. In fact, a large part of the variation in 

agricultural productivity is explained by climate and land characteristics, ensuring that population density 

only affects operating expenses per harvested acre (Liang et al., 2017). 
16 Because the coefficient of interest is 𝜃, climate proxies are simply used as control variables. 
17 A concern associated with the estimations in Table 2 is the finite sample properties of the IV estimator 

(Heid, Larch, and Yotov, 2017). Andrews and Armstrong (2017) report that exactly identified models with 

low number of observations often possess undesirable properties (such that the IV estimator is consistent 

but not unbiased), but the authors propose an estimator that is unbiased. We implement their estimator and 

find no difference with the estimations in Table 2. 
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estimate of 𝜃 = 2.962 falls squarely in the range of estimates found by Reimer and Li (2010), we 

choose it as our preferred value for the comparative advantage dispersion parameter because it 

closely approximates existing values of this parameter from the literature. 

 

 

3.3 Comparative Advantage 

To analyze the comparative advantage of each U.S. state, Equation (13) is re-arranged into the 

relationship 𝑇�̂� = (𝑒𝑆�̂�𝜆𝑖
𝜃)

𝛽
, which expresses agricultural capacity as a function of parameters, the 

estimated size terms, and operating expenses. Using data on operating expenses per harvested acre, 

the estimates for the exporters’ size term, our preferred value for 𝜃 = 2.962, and 𝛽 = 0.88, we 

calculate the value of each state’s agricultural capacity. Thus, each state’s exporter size terms can 

Table 2: Second step estimations, using OLS and 2SLS estimators 

 Exporter  Importer 

 OLS 2SLS  OLS 2SLS 

      

Labor expenses  –0.008  –2.962**   –0.497  –3.804*** 

 (1.138)  (1.344)   (1.175)  (1.399)  

Temperature  2.643  2.301   3.433  3.049  

 (2.899)  (2.968)   (2.995)  (1.399)  

Precipitation  –0.167  –0.032   –0.136  0.015  

 (0.325)  (0.313)   (0.336)  (0.315)  

Temperature2 –0.056  –0.044   –0.068  –0.055  

 (0.058)  (0.054)   (0.059)  (0.054)  

Precipitation2  –0.001  0.001   0.001  0.002  

 (0.003)  (0.003)   (0.003)  (0.003)  

Interaction  0.007  –0.001   0.002  –0.008  

 (0.015)  (0.018)   (0.016)  (0.018)  

Constant  –29.864  –10.245   –36.514  –14.545  

 (37.515)  (37.750)   (38.748)  (37.9423)  

      

 First Stage 

Population Density  0.709***    0.709*** 

  (0.085)    (0.085)  

F Statistic  14.81    14.81  

R2 0.10 0.59   0.08 0.59  

Observations 48 48  48 48 
Notes: *** p < 0.01, ** p < 0.05, * p < 0.10.  

Operating expenses and population density are natural logarithm values. Coefficient associated 

with operating expenses is 𝜃. Values in parentheses are robust standard errors. Coefficients for 

climate variables are recovered up to the constant 
1

𝛽
. 
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be decomposed into an agricultural capacity component and an operating expense component. This 

decomposition is shown in Figure 3. 

Figure 2: Comparative advantage (exporter size-term) decomposition 

 

Note: Figure reports size terms estimates obtained using Equation (13): natural log of the 

implied level of agricultural capacity and natural log of operating expenses per harvested acre 

in each U.S. state multiplied by 𝜃 = 2.962. Implied level of agricultural capacity is calculated 

as  𝑇�̂� = (𝑒𝑆�̂�𝜆𝑖
𝜃)

𝛽
. 

 

All else constant, Equation (7) implies that net exporters have high levels of agricultural 

capacity relative to their operating expenses (𝑇𝑖
1/𝛽

> λ𝑖
𝜃). This is because regions with relatively 

high levels of agricultural capacity relative to their input costs are better able to specialize in crop 

production. Similarly, net importers have low levels of agricultural capacity relative to their 

operating expenses (𝑇𝑖
1/𝛽

< λ𝑖
𝜃). Therefore, the size term can be interpreted as a state’s 

comparative advantage. Figure 3 shows that a state’s comparative advantage largely depends on 

its agricultural capacity. While operating expenses per harvested acre typically fall within a 

relatively narrow range of values, agricultural capacity can take extreme values. Further, as 

implied by the model, states with high agricultural capacity relative to operating expenses are 

predicted to be net exporters based on comparative advantages maintained over other states. 
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Our results indicate that Kansas, South Dakota, Iowa, California, Nebraska, Indiana, Illinois 

and Florida have a comparative advantage in the U.S. market for crops. Not surprisingly, these 

eight states jointly account for over half of all U.S. domestic crop production. However, 

comparative advantage in crop production is not only determined by agricultural capacity. 

Agricultural capacity is largest for California and Florida, but their comparative advantage is 

dragged down by high operating expenses within the state. This emphasizes the importance of 

reducing operating expenses to compete. On the other hand, Louisiana, Rhode Island, New 

Hampshire, Utah, Alabama and Nevada have the lowest levels of agricultural capacity and high 

operating expenses. These six states export less than 2% of domestic crop production and import 

up to four times what they export. 

 

4. Food vulnerability simulation results  

We next turn to employing the estimated structural parameters that reflect the states' comparative 

advantages and our data on domestic crop trade to conduct two counterfactual simulations. The 

first simulation is designed to assess the U.S. states’ vulnerability to food supply chain disruptions. 

This scenario considers an increase in bilateral trade costs separately (i.e. 𝑡𝑖𝑗 = 1.5 ∀𝑗 ≠ 𝑖) for 

each state to quantify the degree to which individual states are vulnerable to food supply 

disruptions. While the state’s comparative advantage can help mitigate welfare losses caused by 

supply chain disruptions, we conduct an additional simulation to investigate the ability of the 

existing food supply chain to mitigate welfare losses from events that affect each state’s ability to 

produce crops (i.e., 𝑇𝑖 = 0.5 ∀𝑖). The numerical results on the key outcomes for each of our 

simulations are shown in Table 3 and further describe in Figure 3 and Figure 4. Notice that we 

decompose our welfare measure into a total expenditure term, 𝑋�̂�, and a price index term, 𝑃�̂�, so our 

welfare measure is real expenditure for crops (Arkolakis, Costinot, and Rodríguez-Clare, 2012). 
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On average, both simulations produce welfare losses around 15%, but divergence in 

counterfactual expenditure and prices signals the mechanisms that govern each simulated event. 

Our supply chain shock results indicate that expenditure fall by 16% with a small hike in the level 

of prices. The latter effect suggests that the primary factor governing welfare losses from 

disruption of supply chains in the U.S. is shortage of crops. Recent literature (Ferguson and Gars, 

2020; Dall’Erba, Chen, and Nava, 2021) provide empirical evidence of producers substituting 

domestic intermediate inputs for imports when U.S. states are impacted by drought events. Results 

in the bottom part of Table 3 investigate the capacity for states to mitigate impacts of adverse 

production shocks through trade. In contrast to our initial simulation, our production shock 

counterfactual increases both the level of expenditure and crop prices. Our results highlight that 

states are able to substitute local production shortfalls by sourcing crops from other states at 

relatively expensive prices. Nevertheless, the capacity of states to cope with each simulated shock 

differs and so their extent to which expenditure and prices changes. Table 3 shows that U.S. states 

are largely heterogenous in their responses to the adverse events with some states being virtually 

unaffected by either shock. In Figure 3 and Figure 4 we investigate further our simulation results 

including states competitiveness (Figure 2) as an additional dimension in our analysis. 

In Figure 3, we plot our results from Table 3 by comparing welfare and the level of 

competitiveness (see discussion in section 3.3) of each state (top panel), and prices and the level 

expenditure (bottom). Comparison between the level of states’ competitiveness and their welfare 

losses shows that large agricultural producers (rightmost part of Figure 2) are the least impacted 

by supply chain disruptions, while small agricultural states (leftmost part of Figure 2) are the most  

Table 3: Simulation results 

Supply chain shock 

 Mean Std. dev Minimum Maximum 

𝑊�̂� 0.82  0.072  0.66  0.96  

𝑋�̂� 0.84  0.069  0.67  0.96  

𝑃�̂�
 1.02  0.010  1.01  1.05  

Production shock 

 Mean Std. dev Minimum Maximum 

𝑊�̂� 0.89  0.081 0.71  0.99  

𝑋�̂� 1.12  0.038 1.04  1.19  

𝑃�̂� 1.27  0.107 1.07  1.45  

Notes: Table shows descriptive statistics from simulation results for all 

U.S. states. Supply chain disruptions and production shocks are 

calculated with Equation (10).   
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Figure 3: Supply chain disruption simulation results 

 

(a) Welfare and Competitiveness 

 

(b) Price and Expenditure 

Note: Figures describe our welfare results compared with each state’s competitiveness (top), and 

the level of prices and expenditure (bottom) in the simulation described in Table 3. 
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impacted. The latter observations suggests that the extent to which states substitute imports for 

domestic production depends on their initial level of agricultural capacity. To illustrate, food 

producers in big agricultural states such as California, Florida, and Illinois experience welfare 

losses of less than 5%, mostly being affected by slight reductions in the availability of crops per 

the bottom panel. On the other hand, producers in Alabama, Louisiana and Nevada experience 

welfare losses close to 30%, and the bottom panel show that most of the effect come from a 

reduction in the level of expenditure on crops.  

An initial implication of our results in Figure 3 is the role of proximity to crop sources to 

ameliorate the impacts of supply disruptions on food processors’ production. The role of proximity 

as a determinant in the location where crop users decide to establish their operations has long been 

investigated (Henderson, and McNamara, 2000; Jakubicek, Woudsma, 2013; Li, Miao, and Khana, 

2019), but its advocacy as a mitigating factor is a recent topic of debate (Hobbs, 2020; Thilmany 

et al., 2020; Martinez, Maples, and Benavidez, 2021). An opposing argument is the role of inter-

state trade to cope with agricultural productions shocks such as those coming from droughts and 

floods. Ferguson and Gars (2020) find that crop producers substitute domestic inputs for imports 

after they experience a drought event, and Dall’Erba, Chen, and Nava (2021) calculate that inter-

state trade will serve as a $14.5 billion mitigation tool for farmers in the U.S. to deal with future 

weather conditions. In Figure 4, we expand the conclusions of Dall’Erba, Chen, and Nava (2021) 

to study the mechanisms that govern their conclusions.  

Similar to Figure 3, Figure 4 plots our results from Table 3 by comparing welfare and the 

level of competitiveness (see discussion in section 3.3) of each state (top panel), and prices and 

the level expenditure (bottom). For our production shock simulation, we expect the largest losses 

to be associated with the states with the highest comparative advantage; but by limiting our focus 

to the states with the highest comparative advantage (rightmost states in Figure 2), we can study 

the role of the existing food supply chain on substituting domestic consumption for imports. Our 

results suggest that the initial level of imports is a major factor driving the welfare results of our 

simulation. Intermediate users in Montana, Kansas and North Dakota rely heavily on their 

domestic crop production. These states experience a large change in their implied comparative 

advantage, but their nominal food expenditure and prices change by similar amounts. On the other 

hand, states with a more balance composition of imports and domestic consumption have the least  
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Figure 4: Production shock simulation results 

 

(a) Welfare and Competitiveness 

 

(b) Price and Expenditure 

Note: Figures describe our welfare results compared with each state’s competitiveness (top), 

and the level of prices and expenditure (bottom) in the simulation described in Table 3. 
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severe impacts, suggesting that inter- and intra-supply chains are developed at similar levels. 

Substitution of domestic consumption for imports is more feasible in these states. 

In summary, our three counterfactual analyses emphasize that the distributional impacts of 

domestic supply chain disruptions hinge on the extent of individual states’ agricultural productivity 

capacities, and that the capacity for states to mitigate the impacts of adverse production shocks 

through trade relies on the degree to which states are able to substitute local production shortfalls 

by sourcing crops from other states. 

5. Conclusions 

Our extension of the Ricardian trade model of EK offers a comprehensive and structurally 

grounded model of the U.S. market for crops that can be employed to analyze a large array of 

counterfactuals concerning food security within the United States. We incorporate assumptions 

about the heterogeneity of farmers’ production and characterize the optimizing behavior of the 

model’s agents. Our conceptual framework also considers the realities of the U.S. domestic food 

system and models food processing plants as the main consumer of farmers’ crops. An advantage 

of our approach is that we consider the production side, so our model permits an analysis of market 

mechanisms that govern crop trade, expenditure and prices through a specification of the U.S. 

states’ comparative advantage. Finally, we decompose each U.S. state’s comparative advantage in 

the market for crops into an agricultural capacity term and an operating expenses term, which can 

be used to study the determinants of the welfare impacts that manifest in our various counterfactual 

scenarios. 

 We implement our general equilibrium model of interstate crop trade to assess the food 

vulnerabilities of the existing U.S. domestic food supply chain. Our simulation results provide 

insights into U.S. states food vulnerabilities through food processing plants’ expenditure on crops, 

crop prices, and overall consumer welfare. We consider two alternative counterfactual scenarios 

to assess the geography of the domestic food supply chain and the implications of these 

counterfactuals for production, consumption, and consumer (i.e., intermediate users) welfare. The 

first counterfactual is concerned with supply chain disruption that increases the trade costs between 

states. We demonstrate that states’ vulnerability to disruptions in the food supply chains or 

production shocks can be explained by their relative comparative advantage in the domestic market 

for crops. We find that the distribution of welfare losses caused by disruptions in the existing 

supply chains depends on a state’s ability to substitute imports for domestic production. We 
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conduct an additional simulation to investigate the ability of the existing food supply chain to 

mitigate welfare losses from events that affect each state’s ability to produce crops, arriving to 

similar conclusions regardless of a state’s initial comparative advantage. The policy implications 

of our study suggest that the resilience and efficiency of agricultural supply chains depends on 

both inward- and outward-oriented approaches to the design of domestic food systems, and 

crucially, that interdependence as facilitated by trade is a key factor in allowing regions to mitigate 

adverse shocks to their own production. 
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