
65-67 Mumford Hall
1301 West Gregory Drive
Urbana, IL, 61801

Center for Climate, Regional, Environmental and Trade Economics 
www.create.illinois.edu 

Revisiting the impact of climate change on agriculture through spatially-varying 
and place-tailored Ricardian estimates 

Noé J Navaa, Sandy Dall’erbab, Chang Caic, and A. Stewart Fotheringhamd 

aEconomic Research Service, U.S. Department of Agriculture, Kansas City, MO 64105, USA, 
noe.nava@usda.gov 
bUniversity of Illinois at Urbana-Champaign, Center for Regional, Environmental, and Trade 
Economics, dallerba@illinois.edu  
cUniversity of Illinois at Urbana-Champaign, Center for Regional, Environmental, and Trade 
Economics, ccai5@illinois.edu 
 dSchool of Geographical Sciences and Urban Planning, Arizona State University, 
sfotheri@asu.edu 

CREATE Discussion Paper ##-22-02 
February, 2022 

Abstract: The Ricardian framework has been widely used to study the impact of climate change on 
agriculture across U.S. counties over the past few decades. While spatial heterogeneity of climate change 
is well-accepted, the literature struggle to reach an agreement on how to model it, hence leading to a wide 
range of forecasted impacts. This paper employs Multiscale Geographically-Weighted-Regression 
(MGWR) to avoid setting an a priori definition of heterogeneity and to generate county-specific marginal 
effects of climate change impacts. This manuscript tests the predictive power of our MGWR application 
with other functional forms found in the literature on a homogenized dataset of historical climate, 
demographic and soil quality controls.  Our cross-validation exercise indicates that our MGWR approach 
has higher predictive power than studies that cluster spatial units, and that other approaches have a 
downward bias. We attribute the divergence in results to unspecified heterogeneity.  Our place-specific 
marginal effects will help guide the development of place-tailored mitigation and adoption strategies to 
climate change.
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1 Introduction

The estimation of damages from global warming, particularly in the agricultural sector,

is receiving an increasing amount of attention. The Ricardian approach, a reduced-form

hedonic analysis developed by Mendelsohn et al. (1994) to calibrate such an impact over

a single cross-section of data, has been extensively employed to predict climate change

induced damages on agriculture across the spatial units (farms, municipalities, regions)

of the country under study, including the U.S. (Schlenker et al., 2005; Schlenker and

Roberts, 2006; Dall’erba and Domı́nguez, 2016), China (Liu et al., 2004; Wang et al.,

2009) and South-Africa (Gbetibouo and Hassan, 2005).1 For a single country, however,

the consequences of climate change can diverge widely across studies. Cai and Dall’Erba

(2021) investigate the role of group-membership i.e., clustering spatial units that are

thought to respond similarly to climate change, in the U.S. Their findings suggest that

a priori definitions of group-membership are the single determinant that explains the

divergence in results across Ricardian studies for U.S. counties.

The global nature of the marginal effect of climate on spatial units has motivated the

development of such grouping strategies. Early contributions of the Ricardian literature

(see the work of Mendelsohn et al., 1994, and Mendelsohn and Dinar, 2003 ) have been

criticized for not fully accounting for region specific features. Subsequent studies, such as

Schlenker et al. (2005), Deschênes and Greenstone (2007), and Dall’erba and Domı́nguez

(2016), have remedied this shortcoming by grouping counties based on irrigation status,

state boundaries and elevation. In addition, studies add a quadratic term to the climate

covariates such that the marginal effect is dependent on space; but as we demonstrate

in the next section, a quadratic term does not fully incorporate the role of geographic

determinants into the estimated impact of climate. These approaches allow the generation

of between two and fifty different marginal effects for each covariate. However, Cai and

Dall’Erba (2021) indicates that among the county groupings chosen in the literature

focusing on the US agriculture, there is little evidence that one grouping outperforms the

other in terms of predictive power.
1For an exhaustive review of these Ricardian applications see Mendelsohn and Massetti (2017).
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Ex-ante grouping definitions raise endogeneity concerns, so a potential solution to

this confusion is to generate spatially varying estimates without any a priori clustering

of counties via local regression techniques. Then, clear county-specific marginal effects

can be calculated and place-tailored mitigation strategies can be derived from them.

Several empirical applications of local regression techniques have outperformed global

approaches in terms of their predictive power (see, among others Paez et al., 2008, Zhang

et al., 2011, and Soler and Gemar, 2018). However, few applications of local regression

models focus on agriculture and, when they do, their outcome variable is crop yield.2

Consequently, spatial heterogeneity in the marginal effects of climate change has been

underexplored. We focus on the United States, a country that has been subject to a large

number of previous county-level studies with which we can compare our approach using

the newly-developed Multiscale Geographically Weighted Regression (MGWR) frame-

work (Fotheringham et al., 2017).

Our primary contribution, therefore, is to demonstrate the predictive gains from using

the MGWR estiamator compared to the global approach, with or without spatial hetero-

geneity, used in the works of Mendelsohn et al. (1994), Dall’erba and Domı́nguez (2016)

and Schlenker et al. (2005). In all four cases, we rely on the same data, measured in 2012,

and the same functional form and covariate choices as defined in Mendelsohn et al. (1994).

We are aware that the more recent contributions of Dall’erba and Domı́nguez (2016) and

Schlenker et al. (2005) use more and different covariates, and that other contributions,

such as Deschênes and Greenstone (2007), have extended the Ricardian approach to a

panel context. Nevertheless, it is only by comparing models for which the only difference

is the definition of spatial heterogeneity that we can assess the relative advantage of our

MGWR framework compared to global approaches. We do so by comparing the capacity

of each model to accurately predict the 2017 observed values when relying on marginal

effects calibrated in 2012. We find that our MGWR estimator outperforms previous han-

dlings of the spatial heterogeneity in terms of predictive accuracy. For example, previous

approaches predict losses when we observe gains, and only our MGWR predicts gains.
2See for example Cai et al. (2014), and Shiu and Chuang (2019).
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We attribute this difference to a miss-specification of clustering in previous studies that

can be corrected with the use of MGWR.

In the next section, we develop the conceptual framework of our spatial non-stationary

Ricardian approach that extends the original idea of Mendelsohn et al. (1994) to a local,

multiscale structure. We describe in section 3 the data employed in our estimations and

in the cross-validation exercise. Contrary to the a priori clustering approaches adopted

by previous studies, MGWR allows us to be agnostic about any possible clustering of

counties in terms of their response to climate change. In order to show the appeal of this

approach to our case study, we employ in section 4 a cross-validation approach on the

data observed in 2017. Results provide evidence of the relative greater predictive power

of our local approach compared to any previous specification.

2 Spatial non-stationary Ricardian approach

The idea at the core of the Ricardian approach is that landowners adapt their production

choices to new climate conditions. The decisions made vis-à-vis the optimal use of the

land are reflected in the land price which is commonly modeled as the discounted sum of

future net returns (Mendelsohn et al., 1994; Plantinga et al., 2002):

Vi =
∫

π∗
i (t)e−rtdt (1)

where Vi is farmland value, π∗
i is the optimal net returns to land at location i, and r is

the discount rate. Net returns are a function of the product of the land’s output market

price Pk and a vector of input prices w. They depend also on a set of exogenous variables,

on different land uses denoted as k, and on zi = (Ci,Gi,Si) that is composed of climate

attributes Ci, socio-economic characteristics Gi, and soil quality indicators Si (Hsiang,

2016):

π∗
i = maxkε{1,...,K}πik(Pk,w, zi) (2)

In this framework, the effect of climate change on farmland values can be conceptu-
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alized in panel (a) of Figure 1. Note that the x-axis focuses on changes in temperature,

but a similar approach could be used for changes in precipitation. The three overlapping

parabolas represent the envelope formed by three different types of land use reflecting

that, as temperature increases, farmers would choose to switch their inputs and outputs

to maximize the land’s net return (y-axis left) for a given temperature level. The land

value this process leads to (y-axis right) is reflected in the outer parabola for the entire

range of temperature. Traditionally, Equation (1) is parametrized through the economet-

ric model depicted in Equation (3) where (β′
1, β′

2, G, θ) is a set of exogenous coefficients

(Fezzi and Bateman, 2015).3

Vi = α0 + β
′
1Ci + β

′
2C2

i + γ
′
Gi + θ

′
Si + εi (3)

The average marginal effect of climate on farmland value, ∂Vi

∂Ci
= β

′
1 + 2β

′
2Ci, is

a function of Ci. However, in this expression, the two beta coefficients are a-spatial.

Their magnitude is assumed to be valid for any county in the sample, from Florida to

Minnesota, so that the only source of spatially varying marginal effects lies in the value of

the covariate Ci. Several authors have challenged the assumption that the marginal effect

of climate change is constant for all locations (Mendelsohn and Dinar, 2003; Schlenker

et al., 2005; Timmins, 2006). Panel (b) of Figure 1 illustrates their rationale for the

simplest case of two different responses. If the econometric model omits the different

responses to climate change, future farmland predictions will fall between the green and

the black outer parabolas.

The slope heterogeneity illustrated in panel (b) of Figure 1 can be treated by disag-

gregating the estimations to a finer spatial scale. The Ricardian literature offers different

grouping strategies that consist of clustering counties that are thought to be subject to

similar effects from climate change. Some of the earliest investigations in this direction

find that climate change has little or no effect on irrigated farmlands, suggesting that in

earlier studies the gains associated with climate change are underestimated (Mendelsohn
3Based on their approach, Mendelsohn et al. (1994) forecast that global warming may bring average

gains to U.S. agriculture. Since then, their pioneering work has led to a surge of studies using a variation
of the Ricardian approach, either in the U.S. or abroad (Mendelsohn and Massetti, 2017).

4



(a) Spatial homogeneous responses

(b) Spatial heterogeneous responses

Figure 1: Hedonic approach under different spatial assumptions.
Note: For each color, the three overlapping paraboles represent three different land uses, so the upper
envelop maximizes net returns with respect to the different activities and temperature levels. The outer
parabole represents the land value over the different temperature and illustrates the farmers’ net return
expectations. Panel (a) illustrates the case for homogenous responses to climate change, while panel
(b) represents the case for two different responses to climate change. The assumption of homogenous
responses when the data generating process exhibits heterogenous responses as in panel (b) would lead
to future predictions falling between the two outer paraboles.
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and Dinar, 2003). Once irrigation is accounted for, Schlenker et al. (2005) find that the

projected climate impact estimates for rain-fed areas converge to a national annual loss

of $9.62 billion. In their panel data estimation, Deschênes and Greenstone (2007) allow

the climate coefficients to fully interact with irrigation and state fixed effects. Their re-

sults indicate that climate change will benefit farmers by $3.24 billion.4 More recently,

Dall’erba and Domı́nguez (2016) split the U.S. Southwestern counties into two groups

based on the median value of elevation. Their results show that the probability of a neg-

ative future impact of climate change is larger in highland counties which are forecasted

to experience heat waves more frequently than in the lowland counties.

When Cai and Dall’Erba (2021) investigate the effect of the above grouping specifi-

cations on the marginal impact of climate change on farmlands, they conclude that the

predicted change in farmland values varies only slightly when either irrigation or eleva-

tion is used as the criterion for grouping spatial units. Contradictory findings about the

direction and/or magnitude of the impact of climate change in U.S. agriculture arising

from different grouping strategies of spatial units suggest that the clustering of spatial

units in such studies has an effect on the analytical results – a problem often referred

to as the modifiable areal unit problem (MAUP) (Fotheringham and Wong, 1991). This

effect has been recognized in the context of studies on the impact of climate change on

agricultural productivity by Deschênes and Greenstone (2007, 2012).

Given the unsuitability of a priori groupings of spatial units with which to demonstrate

spatially heterogeneous effects of climate change on agricultural production, we take a

different approach and rely on local regressions to relax the assumption that the data

generating process is constant over space without having to specify any a priori region-

alization of units. Several types of statistical models exist that generate locally varying

responses to the same stimuli, such as the Bayesian spatially varying coefficients model

(Gelfand et al., 2003; Fotheringham et al., 2017, 2021) and the frequentist multiscale

geographically weighted regression approach (Yu et al., 2020a,b), although comparative
4Fisher et al. (2012) find and correct several irregularities in the paper of Deschênes and Greenstone

(2007), hence concluding with a negative impact of climate change on U.S. agriculture across different
model specifications.
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studies suggest they produce similar results (Wolf et al., 2018).

We selected the GWR framework because of its ease-of-use, familiarity, scalability

and the fact that it has never been applied to Ricardian studies.5 Equation (4) depicts a

spatially varying model where yi is the dependent variable, and xik is the kth explanatory

variable. This model is known as the basic-GWR. The local coefficients are denoted

as β0(ui, vi) for the intercept and βk(ui, vi) for the coefficients associated with the kth

explanatory variable. In turn, coefficients are a function of the ith observation’s latitude

ui and longitude vi. The stochastic error is denoted by εi. To retrieve the local coefficients

associated with Equation (4), GWR employs a variation of the Generalized Least Squares:

β = [X ′W (ui, vi)X ′]−1X ′W (ui, vi)Y , where the diagonal weighted matrix is denoted

by W(ui, vi). Because its elements depend on the location of the ith observation, each

parameter is location-specific.

yi = β0(ui, vi) + Σkβk(ui, vi)xik + εi (4)

One problem with basic-GWR is that it imposes the same bandwidth (i.e. the same

degree of spatial heterogeneity) on each set of local parameter estimates. To remove this

problem, Fotheringham et al. (2017) derive a generalization of the basic-GWR, known

as Multiscale Geographically Weighted Regression (MGWR), that permits multiple local

bandwidths. This model is depicted in Equation (5) where the superscript bw indicates

that each set of local parameter may have a different bandwidth, distinguishing it from

Equation (4).

yi = βbw
0 (ui, vi) + Σkβbw

k (ui, vi)xik + εi (5)

MGWR is estimated with a back-fitting algorithm that maximizes the expected log-

likelihood of each term in an additive model: y = Σkfk, where each fk = βbw
k (ui, vi)xik

5In contrast to other GWR methods, the MGWR is more flexible in how spatial heterogeneity is
modelled since it allows the calibration of coefficients to have different bandwidths depending on the
variable i.e., each covariate is regressed across different subsets of observations. For example, if the
nature of one variable is global and the rest are not, MGWR will assign a bandwith equal to the total
of observations to the former covariate and a lower bandwidth to the latter one.
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in Equation (5) and y is its dependent variable (Fotheringham et al., 2017). In each

iteration, the back-fitting algorithm calculates the residual ε = y − Σkfk and regresses

each term of the form ε+ fk against its corresponding data vector xik using the basic-

GWR estimator described above until a pre-specified convergence criterion is reached.6

Estimating the Ricardian model of Equation (3) with the capabilities of the MGWR esti-

mator allows the estimation of the localized marginal effects of the climate conditions on

agricultural production without pre-specifying any grouping of spatial units and without

imposing any restriction on optimized covariate-specific bandwidths. In this framework,

the global model in Equation (3) relating agricultural land value to a series of covariates

is depicted in Equation (6).

Vi = αbw
0 (ui, vi) + βbw

1 (ui, vi)′C + βbw
2 (ui, vi)′C2 + γbw(ui, vi)′G + θbw(ui, vi)′S + εi (6)

To illustrate how local models improve upon Equation (3), panel (a) in Figure 2 shows

the extreme case in which the coefficient β varies across all spatial units. Panels (b) –

(d) employ different grouping techniques such that β is allowed to vary across clusters,

and panel (e) is the basic-GWR estimator. As more interactions are included global

specifications improve but they still present severe biases. The set of β values recovered

with the GWR specification captures closely the true specification of β without imposing

any dummy interaction. Panels (b) – (d) reflect the bias that ad-hoc specifications would

have on local estimates while panel (e) illustrates our proposed correction. The key

feature of GWR methods is therefore to allow the researcher to uncover the presence of

local clusters and to include them in the estimation process without prior knowledge of

the number of existing groups, group location and group membership.
6MGWR inference is discussed in the appendix A.

8



(a) True β (b) Global (c) Global one dummy

(d) Global Two dummies (e) GWR

Figure 2: Spatially varying data generating process across different estimators.
Note: True β = 1 + (ui + vi)2. Panels (a) is the simulated spatial data set. Panels (b) - (d) employ
different grouping techniques such that β is allowed to vary across clusters, and panel (e) is the basic-
GWR estimator. As more interactions are included, global specifications improve, but they still present
severe biases. The set of β values recovered with the GWR specification captures closely the true
specification of β without imposing any dummy interaction.

3 Data

The Ricardian literature has three distinct traditions in terms of their identification strat-

egy with each new development raising upon the alleged shortcomings of the other. First,

issues have been raised about the cross sectional application of farmland prices in reference

to endogeneity, and instead they exploit a panel of random variations in weather to iden-

tify their key parameters (Deschênes and Greenstone, 2007, 2012). A recent development

in the literature considers the quality of estimated coefficients to account for long-run

adaptation and instead exploits county-level climate trends via long-difference estimators

(Hsiang, 2016; Burke and Emerick, 2016). We follow the canonical work of Mendelsohn

et al. (1994) because our manuscript is interested in showcasing how local-regressions, our

MGWR estimator, can offer empirical applications limited to a cross-section an alterna-

tive to account for the spatial non-stationarity of the impact of climate change. Following

closely the canonical work of Mendelsohn et al. (1994), our model relates average farm-

land value per acre with seasonal climate data while controlling for demographic and soil

quality characteristics as shown in Equation (6).
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We initially considered calibrating our model with data from all 3,008 non-metropolitan

contiguous U.S. counties, but we followed Schlenker et al. (2005) and Dall’erba and

Domı́nguez (2016) by removing urban counties, 207 of them, defined as counties with

more than 1,600 inhabitants per square mile. A further 34 counties were removed be-

cause of missing data for at least one of our variables. Our final sample is therefore

composed of 2,687 U.S. counties. Table 1 contains basic summary statistics related to

the dependent and the main explanatory variables employed in our study. Our vari-

able of interest is the average county farmland value per acre. The U.S. Department of

Agriculture prepares a census every five years in which it collects farmers’ land prices.

The two most recent censuses were in 2012 and 2017, so we will use the former for cal-

ibration purposes and the later to test the predictive accuracy of each model compared

to observed values. Our historical climate variable are precipitation and temperature.

Precipitation is measured in cubic inches and temperature is measured in degree Celsius.

The climate data are collected from the Parameter-elevation Regression on Independent

Slopes Model (PRISM) database (PRISM Climate Group, 2021). We process PRISM

data to estimate a historical average for precipitation and temperature for the U.S. coun-

ties over the 1993-2012 and 1993-2017 periods. The Ricardian literature raises concerns

about the non-concavity in the farmland value’s responses to seasonal climate. Indeed,

one should expect farmland value to increase with respect to climate at a decreasing rate

as in Figure 1. This limitation prevents researchers from interpreting extremum as max-

imum and is the result of aggregating monthly climate into seasonal climate (Darwin,

1999). Disaggregating climate into monthly values, however, would cause serious multi-

collinearity issues, and dropping some arbitrary variable may cause an omitted variable

bias (Mendelsohn and Massetti, 2017). Including all seasonal variables for precipitation

and temperature is paramount for our analysis since we aim to capture the heterogeneity

of growing seasons in the U.S.

Table 1 contains basic summary statistics related to our control variables. The

county’s population density per square mile is obtained from the 2010 U.S. Census Bu-

reau of Statistics, and the county’s per-capita income is obtained from the U.S. Bureau
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Table 1: Descriptive statistics: Dependent variable and historical climate variables

Variable Mean s.d. Max. Min.
2012
Farmland value per acre $3,216 $2,029 $ 21,801 $ 192
Temperature

Winter (Dec. - Feb.) 1.94 5.94 19.56 -11.99
Spring (Mar. - May.) 12.50 4.93 24.42 0.87
Summer (Jun. - Aug.) 23.50 3.14 32.61 13.45
Autumn (Sep. - Nov.) 13.33 4.31 25.15 2.56

Precipitation
Winter (Dec. - Feb.) 2.79 1.87 17.29 0.06
Spring (Mar. - May.) 3.34 1.27 10.55 0.04
Summer (Jun. - Aug.) 3.649 1.44 9.83 0.01
Autumn (Sep. - Nov.) 2.86 1.28 10.77 0.08

2017
Farmland value per acre $3,165 $2,095 $ 28,569 $ 162
Temperature

Winter (Dec. - Feb.) 2.23 6.03 19.65 -12.03
Spring (Mar. - May.) 12.88 4.90 24.74 1.21
Summer (Jun. - Aug.) 23.44 3.13 32.77 13.53
Autumn (Sep. - Nov.) 13.11 4.33 24.99 2.28

Precipitation
Winter (Dec. - Feb.) 2.79 1.90 17.65 0.03
Spring (Mar. - May.) 3.47 1.29 10.96 0.00
Summer (Jun. - Aug.) 3.61 1.56 9.82 0.00
Autumn (Sep. - Nov.) 2.76 1.22 12.15 0.02

Observations 2,689
Note: Temperature is reported in degrees Celsius. Precipitation is reported in cubic millimeters
per day.

of Economic Analysis of the same year. Controlling for socio-economic characteristics

allows us to remove unwanted variation that can bias our forecast. Soil quality is a mea-

sure of a land’s productivity, so we include information about salinity, flood frequency

ratio, wetland, slope steepness, erosion index, sand contents, clay contents, permeability,

and moisture capacity. Soil indicators are obtained from the U.S. Geological Survey.

Because we do not have reliable data for our control variables in 2017 and those for 2012

are proxied with data from 2010, we follow Deschênes and Greenstone (2007, 2012) and

assume they are constant. Thus, we can forecast changes in the value of farmland prices

as a function of climate change (first-degree difference in our climate variables).

In the subsequent sections, we test the robustness of our model relative to previ-

ous specifications forecasting the impacts of climate change on agricultural land values,
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Table 2: Descriptive statistics for the value of land and control variables

Variable Mean s.d. Max. Min.
Socioeconomic Variables
Population density per square mile in
2010

73.22 99.79 1582.74 0.13

Per capita income in 2010 $39,209 $10,531 $52,380 $18,404
Soil Quality Variables
Salinity 0.20 0.56 7.19 0.00
Flood frequency ratio 0.08 0.12 0.73 0.00
Wetland ratio 0.55 0.38 1.00 0.00
Slope steepness 11.46 11.75 68.41 0.54
Erosion index 0.27 0.08 0.49 0.00
Sand contents 38.37 19.68 96.33 0.98
Clay content 18.54 8.15 55.12 1.12
Permeability 20.46 18.68 113.63 0.91
Moisture capacity 0.16 0.04 0.38 0.01
Observations 2,687

namely: Mendelsohn et al. (1994) (no grouping of spatial units); Schlenker et al. (2005)

(two-way division of spatial units based on irrigated ratio ≥ 0.2); and Dall’erba and

Domı́nguez (2016) (two-way division based on median elevation). For each approach we

employ the same 2012 dataset to predict the 2017 farmland values. This allows us to as-

sess the predictive power of the local regression approach described here relative to other

approaches for a year for which the data are observed. We then employ our updated

data in 2017 to estimate the marginal effect of yearly and seasonal climate variables on

farmland values to further study the capabilities of our estimator choice.

4 Results

4.1 Cross-Validation Results

Cai and Dall’Erba (2021) recognize the shortcomings associated with the wrongful group-

ing of U.S. counties in the Ricardian approach, so the authors perform cross-validation

exercises across several groupings for the same year. Our manuscript expands their ap-

proach and calibrates all the models on 2012 data to predict the changes in farmland val-

ues by 2017. To our knowledge, no previous Ricardian study has used a cross-validation
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approach across years to demonstrate the better predictive power of one model over

another. The results of our cross-validation exercise are depicted in Figure 3 where the

observed 2012-2017 changes are displayed on a map and in a histogram and the 2012-2017

predicted changes based on the various models are also displayed.

The table at the bottom of the figure reports certain prediction diagnostics. All

the global regression models significantly underestimate the changes in farmland values.

Many of the predictions from the global models are centered around zero, but with some

high-valued cluster of losses, which is reflected in the average estimated county loss of

-$412.08 to -$280.79 per acre. Only MGWR predicts gains between 2012-2017 with an

average of $109.86 per acre, which is still lower than the observed values in 2017 at

$573.92 per acre. Despite this difference, our local estimator significantly outperforms

any of the global specifications as they each predict losses by 2017. The better predictive

performance of MGWR is also evidenced by its low Mean Squared Error (MSE)7 value

compared to other models.8 Further examination of Figure 3 indicates that the results

from the local model reproduce a pattern similar to the isotherms formed when temper-

ature is mapped across latitudes in the U.S. In contrast, none of the global specifications

shows this pattern, but instead they highlight ill-defined clusters of high losses.9

Two additional elements can be drawn from these results. First, the local capabilities

of the non-stationary Ricardian approach do not impose any kurtosis in the distribution

of gains and losses. Figure 3 shows that the tails from the global predictions are thinner

and longer than those from the local predictions. As a result, most global predictions fall

around the mean, hence creating high peaks in their distribution. Because our MGWR

Ricardian approach does not restrict the kurtosis of our predictions, it is able to uncover

important unspecified heterogeneity. The second feature we note is that local specifica-

tions ignore outliers, such as the land appreciation in the Californian counties which is

likely to be a result of the California Drought of 2012. This suggests that the local model
7MSE = 1

n

∑
N (Vi − V̂i)2, where V̂i is the predicted value.

8Our approach also ignores some outliers along the West Coast which every global estimator predict
would increase slightly in 2017, suggesting that our estimator exchanges complexity in predictions for
generality in the model.

9The MGWR predictions to the middle of the century do not follow the same temperature/latitude
approach, demonstrating that our MGWR approach incorporates unspecified clusters beyond weather.
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Observed MGWR MNS SHF DD
Average gain/loss 573.92 109.86 -280.79 -285.44 -412.08
Total gains/losses 1,588,041.72 303,994 -766,938 -789,816 -1,140,231
MSE - 2,033,204 2,241,155 2,181,644 2,490,719
Min -5,074 -5,848.89 -9,127.98 -9,812.79 -45,441.29
Max 22,353 2,547.22 3,087.78 3,087.11 75,197.74

Figure 3: Spatial and density distribution of observed and predicted values for 2017 across
specification.
Note: MGWR is our local specification. MNS employs no grouping strategy following Mendelsohn et al.
(1994). SHF splits counties by irrigation ratio (0.2) following Schlenker et al. (2005). DD splits the
counties by median elevation following Dall’erba and Domı́nguez (2016).
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Figure 4: Observed and forecasted farmland values in 2017.
Note: Figure investigates the regional differences across estimators by dividing forecast by climate regions
(Karl and Koss 1984). Outliers falling above $5,000 and below -$5,000 are trimmed for exposition.

underestimates the dependent variable in the locations that are impacted by extreme

weather events but still does a much better job in capturing the impacts of these events

than any global model.

We investigate further the differences between our MGWR estimator and the global

estimators in Figure 4 by dividing forecasts by climate regions (Karl and Koss, 1984). This

figure shows that our local estimator outperforms all global estimators across the different

climate regions except for the Southern and Southeastern regions. The underperformance

of global estimators is clearly observed in the Southwest and in the Northwest and Central

regions where all global estimators predict significantly lower values than the observed

2017 farmland values. MGWR predictions in the Northwest and Central regions surpassed

the observed 2017 farmland values. The absolute value of the difference between our

local and the global regressions favors our MGWR application. For the Southern and

Southeastern regions, the median predictions from the global estimators are close to the

median values of those regions with values above the average predictions, suggesting that

the local estimator outperforms the global estimators.

We acknowledge that there are two caveats about our MGWR estimation that also

affect the studies this manuscript examines. The functional form is assumed to be con-

stant through time. While this is a necessary assumption to make predictions, adaptation

strategies to mitigate the impact of climate change can take place, affecting the model’s
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parameters. The second caveat is the role of omitted variable bias in our estimations.

Studies of farmland prices are constrained by cross-sectional data, so practioners are un-

able to control for time-invariant influences. Despite these limitations, the nature of our

study is not to develop the best functional form, but to propose an estimator to treat

the spatial heterogeneity in the study of farmland prices. As this section demonstrates,

our MGWR Ricardian approach incorporates the spatial heterogeneity present in our

dataset. This having been said, the next section is concerned with the estimation of

county-specific marginal effects of climate that can be employed to develop place-tailored

mitigation stragies to climate change.

4.2 Place-tailored Weather Impacts on Farmland Prices

Figure 5 reports the MGWR parameter estimates of yearly temperature and precipi-

tation obtained based on 2017 data and Equation (6): ∑
k∈Φ

∂Vi

∂Ci
= ∑

k∈Φ{βbw
1k (ui, vi)′ +

2βbw
2k (ui, vi)′Cik}, where k ∈ Φ corresponds to the seasonal weather variables (either tem-

perature or precipitation). Panel (a) indicates the marginal effect of yearly precipitation

on farmland values. Not surprisingly, most counties benefit from an increase in precipita-

tion. In contrast, most counties will experience losses from rising temperature as shown

in panel (b). Our findings indicate significant heterogeneity in the impact of climate

change in the U.S. In both maps, the overall trend with respect to climate change seems

to be either positive (for precipitation) or negative (for temperature), but the direction

of the impact changes for a small subset of counties. For example, the impact of more

precipitation is positive for most of the states except in the counties close to the coast

in Oregon and Washington. Similarly, an increase in temperature damages most farmers

in the U.S. except for some counties in the upper part of Midwest (South Minnesota and

North Iowa). While all our estimated seasonal effects are statistically different from zero,

we are unable to test if the yearly summation are statistically different from zero i.e., no

GWR method exists to test the linear combination of parameters.

In Figure 6 and Figure 7, we dissagregate yearly impacts into seasonal impacts: ∂Vi

∂Ci
=
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(a) Marginal Effect: Yearly Precipitation

(b) Marginal Effect: Yearly Temperature

Figure 5: Marginal effect of yearly precipitation and temperature.
Note: Figure shows the yearly marginal effect of precipitation and temperature, obtained with equation
3:

∑
k∈Φ

δVi

δCi
=

∑
k∈Φ βbw

1,k(ui, vi)′ + 2βbw
2,k(ui, vi)′C, k, where k ∈ Φ indicates the variables associated

with the weather variable i.e., either temperature or precipitation.
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βbw
1k (ui, vi)′ + 2βbw

2k (ui, vi)′Cik.10

In reference to the previous heterogeneity observed in Figure 5, Figure 6 suggests

that precipitation in Spring severly affects counties in the coastal areas of Washington

and Oregon, forming an isolated cluster in the affected area. No seasonal temperature,

however, seems to dominate the direction of the sign for the exceptional cluster of counties

perceived in Figure 7. Additionally, seasonal impacts observed in Figure 6 and Figure 7

have different levels of variance. A strip of counties between Northern California and

Washington benefit the most from Winter precipitation, highlighting their status of irri-

gated counties. Precipitation in the Spring, however, damages these counties. Notice too

that a great deal of spatial heterogeneity is found within the group of the 100th meridian,

which some studies that split regions by such longitude ignore. All these marginal effects

have been calculated and are available upon request.
10In a yet unpublished paper by Gammans et al. (2020), the authors estimate local marginal effects

following the work of Deschênes and Greenstone (2007) i.e., exploiting variations in weather. Our work
differs from theirs in which our identification strategy relies on cross-sectional variations in climate.
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(a) Winter (b) Spring

(c) Summer (d) Autumn

Figure 6: Seasonal precipitation marginal effect: δVi

δCi
= βbw

1,k(ui, vi)′ + 2βbw
2,k(ui, vi)′Ci,k. In

contrast to yearly precipitation, the seasonal effect of weather does not show the same
level of variation for some seasons (except for Winter and Spring). Thus, we describe
their values by quantiles.

The Ricardian application of Dall’erba and Domı́nguez (2016) uncovers that the

marginal impact of climate change is conditional on altitude. The results in Figure 7

show a cluster of counties displaying a large seasonal marginal effect in the Appalachian

mountains, but only for Summer temperature, providing evidence that our MGWR Ri-

cardian approach supports the conclusions derived in Dall’erba and Domı́nguez (2016).

The cluster does not appear for precipitation, suggesting that the impact of precipitation

is not altitude-dependent. In two separate studies, Schlenker et al. (2005) and Schlenker

and Roberts (2006) claim that the 100th meridian should serve as an appropriate split to

cluster counties. The rationale is that counties East of the 100th meridian are rainfed and

as a result, they are more susceptible to precipitation variations. Panel (a) in Figure 6 and

panel (a) in Figure 5 provide evidence to support a split by the 100th meridian in terms of

the impact of precipitation on farmland values. However, the marginal impact of temper-
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ature on farmland value does not display the same pattern. Indeed, panel (b) indicates

the presence of substantial spatial heterogeneity in the marginal impact of temperature

on both sides of the U.S. Furthermore, irrigated counties West of the 100th meridian show

more heterogeneity than their Eastern counterparts. Schlenker et al. (2007) consider this

phenomenon in their own Ricardian study of agriculture. Their study suggests that water

availability is capitalized into land prices and concludes that farmers benefit from rain

after the growing season (Fall and Winter). Our results support their conclusions. Panel

(a) in Figure 5 shows that most counties West of the 100th meridian benefit from pre-

cipitation, which replenishes aquifers. On the other hand, rain-fed counties east of the

100th meridian show more heterogeneity, and even losses in some cases, suggesting that

too much precipitation may lead to floods. As we previously indicated, researchers often

split counties a priori by the 100th meridian and include a dummy variable to generate

two sets of slope coefficients. The results shown in Figure 5 support their rationale.
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(a) Winter (b) Spring

(c) Summer (d) Autumn

Figure 7: Seasonal temperature marginal effect: δVi

δCi
= βbw

1,k(ui, vi)′ + 2βbw
2,k(ui, vi)′Ci,k. In

contrast to yearly temperature, the seasonal effect of weather does not show the same
level of variation for some seasons (except for Summer). Thus, we describe their values
by quantiles.

5 Conclusion

Economic estimates of the agricultural damages from climate change have largely relied

on the Ricardian approach and on econometric techniques that either disregard or reduce

spatial heterogeneity to a small number of groups, often two. Given the size of the U.S.

territory and the large variety of local climate conditions it offers, we believe that a much

greater degree of spatial heterogeneity is present in the impacts climate change can have

on the U.S. agriculture. This paper explores this question by relying on the recently

developed MGWR estimator. Compared to global frameworks, this modeling approach

allows us to uncover spatial heterogeneity in the effects of climate change on agricultural

production without having to set a priori the number of clusters, their location and

their membership; hence allowing us to generate place-specific marginal effects relying
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on a purely data-driven approach. Compared with global models, the MGWR forecasts

exhibit a better capacity for predicting the large spatial variations in climate impact on

farmland values and for accurately predicting future farmland values, as examplified in

our cross-validation exercise for the year 2017. By generating place-specific estimates, our

approach offers policy makers and stakeholders a tool to address the effects of climate

change on a case-by-case basis in each county and suggest mitigation and adaptation

strategies that are place-tailored.

Despite the novelty and strengths of our approach, we acknowledge that our approach

does not include any form of interregional dependence that may play a large role in climate

change mitigation. For instance, a recent contribution by Dall’Erba et al. (2021) estimates

that domestic trade is able to mitigate the negative impact of climate change on crop

profit by a magnitude of $14.5 billion. Fan et al. (2018) arrive to similar conclusions

but argue that it is not only trade but also migration that are mitigation tools against

climate change. As such, further research shall not only offer county-level predictions, but

it shall also account for domestic trade which has been largely ignored in the literature,

interregional linkages based on domestic trade, supply-chain and migration such as in the

case of the Dust Bowl period.
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Appendices

A Inference in the MGWR

Contrary to the basic-GWR, MGWR is defined as a Generalized Additive Model (GAM)

whose values are estimated by a back-fitting algorithm (Fotheringham et al., 2017). In

this case inference is a limitation since there is no single hat matrix mapping the estimated

values ŷi onto yi. Yu et al. (2020a) reframe the basic-GWR as a GAM, and demonstrate

that the hat matrix for a MGWR model can be derived within the back-fitting estimation

algorithm. We display their derivation, by first showing that the hat matrix for a basic-

GWR can be written as an additive term. Then, we demonstrate how a hat matrix can

be estimated and used for the computation of local standard errors.

The hat matrix for the basic-GWR S, is defined in Equation (7) with each row given

by si = Xi(X ′W (ui, vi)X)−1X ′W (ui, vi). Here, Xi is the ith row in the matrix of all

predictors X.

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

X1(X ′W (u1, v1)X)−1X ′W (u1, v1)

...

Xn(X ′W (un, vn)X)−1X ′W (un, vn)

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

Let us define the additive hat matrices by Rk for the set of local parameters βk

associated with the kth explanatory variable, such that it has the following two properties

regarding the dependent variable y:

f̂k = R̂ky (8)

ŷ = Sy = ΣkRky (9)

Equation (8) states that Rk projects y onto each fitted additive term f̂k, and Equa-

tion (9) implies ΣkRk = S. Next, we express each fitted additive term. Each comes

from within each iteration of the back-fitting algorithm described in the main text, as a
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column vector:

f̂k =

⎛
⎜⎜⎜⎜⎜⎜⎝

x1kβ̂1k

...

xnkβ̂nk

⎞
⎟⎟⎟⎟⎟⎟⎠

(10)

Each estimated local parameter can be written as β̂ik = ekβ̂i, where ek is the kth row

of an identity matrix whose dimension is the number of regressors plus 1. Thus, we can

re-write β̂ik as β̂ik = ek(X ′W (ui, vi)X)−1X ′W (ui, vi)y, and Equation (10) as:

f̂k =

⎛
⎜⎜⎜⎜⎜⎜⎝

x1kek(X ′W (ui, vi)X)−1X ′W (ui, vi)

...

xnkek(X ′W (ui, vi)X)−1X ′W (ui, vi)

⎞
⎟⎟⎟⎟⎟⎟⎠

y (11)

Therefore, if the Rk is a hat matrix that projects y onto each fitted additive term f̂k

(Equation (8)), Equation (11) allows us to write each additive hat matrix as:

R̂k =

⎛
⎜⎜⎜⎜⎜⎜⎝

x1kek(X ′W (ui, vi)X)−1X ′W (ui, vi)

...

xnkek(X ′W (ui, vi)X)−1X ′W (ui, vi)

⎞
⎟⎟⎟⎟⎟⎟⎠

(12)

Now, we show how the additive hat matrix, and the MGWR hat matrix, can be

estimated within the back-fitting algorithm. First, let Aj be the hat matrix of the partial

model such that f̂∗
k = Ak(f̂k + ε̂). Within the back-fitting algorithm, f̂∗

k is the updated

fitted additive term from the previous iteration fitted additive term f̂k. In each iteration,

the back-fitting algorithm calculates the fitted residual ε̂ = y − Σkf̂k; but Equation (9)

implies that S = ΣkRk, so we can write the following equality:

f̂∗
k = Ak(f̂k + ε̂) = Ak(Rky + y − Sy) = (AkRk +Ak − AkS)y (13)

The updated additive hat matrix is R∗
k = ARk +Ak − AkS and the updated

MGWR hat matrix is S∗ = S − Rk +R∗
k. With Rk and S, local standard errors can

be computed. First, let us re-write Equation (10) as f̂k = diag(X̂k)β̂k, where diag(X̂k)
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is shown in Equation (14). Then, we can re-write β̂k = [diag(Xk)]−1Rky = Cy, where

C = [diag(Xk)]−1Rk.

diag(Xk) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1k 0 0 0

0 x2k 0 0

0 0 ... 0

0 0 0 xnk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

Finally, we can write the variances of the local parameters β̂k as in Equation (15),

where the normalized residual sum of squares from MGWR is defined by Equation (16)

and the trace of S is defined by τ1 = trace(S). Therefore, we can compute local standard

errors for each parameter with: SE(β̂k) =
√

var(β̂k).

var(β̂k) = diag(CC ′σ̂2) (15)

σ̂2 = ΣN(yi − ŷi)2
n − τ1

(16)

The local standard errors for all local parameters estimated with the MGWR are

defined by SE(β̂) = [SE(β̂1, SE(β̂2), ..., SE(β̂k, )], and the pseudo-t test for each local

parameter is given by:

β̂ik

SE(β̂ik)
∼ tn−τ1 (17)
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